
Privacy Computing with Right to Be Forgotten in
Trusted Execution Environment

Hui Liu∗, Hongzhi Luo∗, Shaofeng Li†, Tian Dong∗, Guoxing Chen∗, Yan Meng∗, and Haojin Zhu∗‡
∗Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China

†Department of Mathematics and Theories, Peng Cheng Laboratory, Shenzhen, China
Email: {sjtuliuhui, luohz1, tian.dong, guoxingchen, yan meng, zhu-hj}@sjtu.edu.cn, lishf@pcl.ac.cn

Abstract—Sharing private data is at risk of potential data
breaches, including the violation of the “right to be forgot-
ten” principle, undermining people’s willingness to share their
data. A common solution is to involve the Trusted Execution
Environment (TEE), which allows the data provider to verify
the computation process without trusting others. However, pre-
vious works have either encountered incomplete computations
or lacked scalability. In this paper, we propose TEERASE,
a secure data-sharing framework that addresses these issues.
TEERASE protects every phase of the data lifecycle and enables
individuals to share personal data with a predefined privacy
budget. In particular, TEERASE applies comprehensive privacy
budgeting mechanisms to efficiently manage privacy budgets and
employs an asynchronized execution approach that decouples
budget consumption from data computation. TEERASE records
the predefined privacy budgets, verifies privacy consumption
requests, updates the remaining budgets, and deletes data that
have exhausted their budgets by preventing any attempts to
access them. We implement a prototype of TEERASE and
evaluate its effectiveness with a realistic case study on Genome-
Wide Association Study.

Index Terms—Data Sharing, Differential Privacy, Trusted Ex-
ecution Environment, Data Access and Usage Control

I. INTRODUCTION

Data privacy has been gaining more attention as various
data protection laws have been enacted, such as GDPR, CCPA,
PIPL, etc. When collecting massive sensitive personal data for
research and development purposes (e.g., genomic information
for clinical care), the privacy information of personal data must
be carefully protected and secured. One primary concern for
data providers to share their data is the lack of control over the
sensitive data after the data release. After releasing personal
data, in most cases, data providers have no control over data
usage and are not aware of potential privacy violations. For
example, sensitive data can be shared with unauthorized parties
or violate the “right to be forgotten” principle regulated by
GDPR. There is another concern that privacy breaches may
occur due to various data inference attacks that have been
disclosed [14]. The more this same data is shared and used, the
higher the risk of potential privacy violations. Thus, to reassure
data providers, it is desired that the usage and destruction of
their data are under their predefined constraints. Particularly,
data should be used only when privacy risks are under control
and purged before the leakage is beyond acceptable bounds.
‡Haojin Zhu is corresponding author.

Mechanisms for self-expiring/self-destructing have been
studied previously [4], [12], [15]. Specifically, they encrypt
private data and transmit encryption keys to data seekers who
want to access the data. Some prior work [4], [12] rely on
the distributed key managers to revoke encryption keys, while
others [15] require data users to puncture the encryption key
in order to revoke their capacity of decrypting ciphertext.
However, they assume that the removal of encryption keys
is executed correctly and do not regulate the usage of private
data to prevent potential data breaches.

Further works [3], [9] introduce TEE, allowing key expira-
tion without establishing a trust chain between data providers
and data seekers in advance. In particular, the predefinable
nature of programs running on TEE lends to their inviolability
by third parties. This characteristic can be utilized to manage
encryption keys and regulate private data computation based
on seeker-provider agreement. To defend rollback or forking
attacks that cause the TEE’s state to be rolled back to a
previous version or forked into multiple versions, they imple-
ment additional integrity verification procedures. However, this
safeguard may lead to incomplete computation if the enclave
fails and cannot deliver the expected results.

Besides, most policy-based expiration schemes [3], [12] aim
to facilitate fine-grained access control, making it challenging
to effectively verify whether a large batch of data requests
adheres to the expiration conditions. To accommodate custom
expiration conditions, these policies are typically stored and
updated independently and require the participation of data
providers. When making data requests, the communication
time increases linearly with the number of key requests and
key managers, which ultimately leads to scalability issues.

In this paper, we propose TEERASE, a secure and con-
trollable data-sharing framework that addresses limitations of
scalability and incomplete computation issues that existing
work possessed. TEERASE restricts the utilization of private
data by associating data entries with privacy budgets which
quantify the acceptable bounds of privacy leakage. Hence,
A privacy budgeting mechanism is proposed to quantify the
levels of privacy leakage and aggregate the budgets to deter-
mine when to destruct data. TEERASE relies on confidentiality
and integrity guarantees of TEE to manage privacy budgets
and destruct budget-exhausted data, thereby ensuring privacy
leakage within a limited scope. On the other hand, TEERASE
adopts asynchronized execution, decoupling the management979-8-3503-1090-0/23/$31.00 © 2023 IEEE

2023 IEEE Global Communications Conference: Communication & Information Systems Security

2573

of budgeting requests and data computation to ensure both
privacy budgeting compliance and result delivery. This allows
TEERASE to support recalculation after failure. To avoid
unauthorized budget consumption resulting from processing
data in varying conditions, TEERASE tracks the hash of the
provided data from data users and binds a fixed random
seed to guarantee deterministic output. Through centralized
and unified budget management, data seekers can effectively
collect massive data from different individuals.

In summary, our work makes the following contributions:
• We propose TEERASE, a centralized framework that

enhances data providers’ control over their released data.
• We design comprehensive privacy budgeting mechanisms

that help to regulate privacy breaches.
• We employ an aysnchronized execution approach that

separates budget requests from data access, addressing in-
complete computation issues encountered by other TEE-
based schemes. This enables more flexible usage of data.

• We implement a prototype of TEERASE with Intel SGX,
conduct a realistic case study and empirically analyze the
efficiency of TEERASE.

The remainder of this paper is organized as follows. We
present the background in Sec. II, and Sec. III introduces the
working scenario and design goals. In Sec. IV, we describe the
details of TEERASE. Finally, we show experimental evaluation
in Sec. V and conclude the paper in Sec. VI.

II. BACKGROUND

A. Trusted Execution Environment

A Trusted Execution Environment (TEE) provides a
shielded execution environment that ensures the integrity and
confidentiality of data and computation processes. It prevents
unauthorized access from external sources, such as malicious
operating systems, to tamper with codes or obtain private data.

Intel SGX. Intel Software Guard eXtensions (SGX)[2] is
Intel’s implementation of TEE, which extends the x86 instruc-
tion set architecture to provides an isolated execution space,
called enclave. SGX offers remote attestation to verify the
authenticity of an enclave and its initial state in a remote host
by examining the signed hash of the data and code inside
enclave. With remote attestation, the client can establish a
secure communication channel with remote enclaves.

Monotonic Counters. Monotonic counters are used to provide
state continuity for TEEs, there are several ways to implement
it [7], [8]. Hardware-based solutions, such as SGX monotonic
counters, use non-volatile storage that restricts the speed
of write access. Software-based solutions [7], [8] introduce
distributed enclaves to break the limits of writing cycles.
What’s more, Niu et al. introduces blockchain to initialize the
system, without relying on a central authority for trust [8].

B. Differential Privacy

Differential Privacy (DP) is a rigorous model that ensures
that an attacker cannot infer the existence of a specific data

Public Storage

Market Server

Data Provider Data Seeker

Access Policy

Encrypted Data Encrypted Data

Request

Secure Channel
Public Channel

Encryption
Key

Encryption
Key①

②

③

④

⑤

⑥

Fig. 1: Working Scenario of TEERASE.

point in the sensitive dataset through any query computed from
it. Formally, we have

Definition 1. For any ϵ > 0 and δ ∈ [0, 1], a random-
ized mechanism M is (ϵ, δ)-DP if for two adjacent dataset
D and D′, which differs only one record, and any output
O ⊆ Range(M), it satisfies:

Pr[M(D) ∈ O] ≤ exp(ϵ)× Pr[M(D′) ∈ O] + δ. (1)

The parameter ϵ quantifies the probability of privacy leakage
with probability 1−δ. If we set δ = 0, we have ϵ-DP satisfied.
A key strength of DP is its composition property:

Theorem 1. For any i ∈ {1, . . . , n}, if mechanism Mi satis-
fies (ϵi, δi)-DP, then the composition of all these mechanisms
satisfies (

∑︁n
i=1 ϵi,

∑︁n
i=1 δi)-DP.

C. Self-Expiring/Self-Destructing

Geambasu et al. first proposed Vanish, a self-expiring
system that utilizes Distributed Hash Tables (DHTs) [4].
They encrypt the private data, split the encryption key into
pieces through Shamir secret shares, and store them across
periodically updating DHTs. Tang et al. improved Vanish
by facilitating key managers with attribute-based encryption,
which enables fine-grained access control [12]. Wei et al.
further developed the concept of forward-secure attribute-
based puncturable encryption that allows for data erasure
without interactions [15]. However, these works only control
the expiration process of the encryption key but cannot prevent
attackers from storing a plain-text copy of the data.

Gao et al. leveraged TEE with attested execution to regulate
the functional access [3]. They establish a distributed access
committee on independent TEEs and run the Raft consensus
protocol to regulate data access. Ren et al. proposed a counter-
based data assured deletion scheme using TrustZone, which
can save traffic cost with one-time key retrieval [9]. However,
compared to TEERASE, these works cannot guarantee result
delivery upon computation failure.

III. OVERVIEW

A. Working Scenario

As illustrated in Fig. 1 , TEERASE involves three parties:
the data provider, the data seeker, and a market server.

2023 IEEE Global Communications Conference: Communication & Information Systems Security

2574

• The Data Provider owns private data and wants to share
them within a certain threshold of leakage probability.
They may specify a privacy budget (e.g., the maximum
number of times the data can be accessed) to present and
the risk of privacy leakage it can suffer with certain usage.

• The Data Seeker looks through the market server’s
website to find its desirable data and calculates this data
within TEE to gain the statistic result.

• The Market Server is a mediator between the data
provider and data seeker. It collects data and its privacy
budget from its owner and advertises them on its website.
It enables the privacy budgeting mechanism with the
assistance of TEE.

B. Threat Model

We assume that the data provider is trustworthy and all
components on her host are reliable. However, she does not
trust either the data seeker or the market server, as they may
attempt to disclose her private information. Besides, the data
seeker can be an attacker who tries to recalculate private data
inside enclaves that have been rolled back and the service
provider may tamper with privacy budgets for profiting.

We assume the TEERASE enclaves running on the data
seeker side and market server are trusted. We also assume
the attacker is powerful to manipulate the system software
stack (e.g., OS or hypervisor) over the host where TEE is
provisioned. The attacker cannot extract confidential informa-
tion protected by TEEs nor corrupt states inside them, but
has access to read and modify memory for all non-enclave
processes and has permission to read/write persistent storage.
There is no guarantee of message reliability when sent from or
received by enclaves. Additionally, Denial of Service attacks
and side channel attacks are not taken into account.

C. Problem Formulation

Consider N data providers PRD1, . . . , PRDN , each of which
has a data entry di, i = {1, . . . , N}, to be shared. Let D =
{d1, . . . , dN} denote the set consisting of all data entries from
these data providers. When uploading di to the market server,
the data provider PRDi specifies a privacy budget B(di) to
represent the acceptable privacy leakage risk.

Consider M data seekers SKR1, . . . , SKRM . Each data
seeker SKRj , j = {1, . . . ,M}, would like to collect a subset
of data entries to run her algorithm Aj . We assume that all
data entries involved in one algorithm Aj would suffer from
a same level privacy leakage risk, denoted by L(Aj).

The market server collects data entries along with their
privacy budgets from data providers and serves requests from
data seekers. Considering a list of L data requests, rl =
(sl, Dl,L(Asl)), l = {1, . . . , L}, where sl ∈ {1, . . . ,M}
presents the l-th request comes from the data seeker SKRsl .
Dl ⊂ D indicates that the SKRsl is requesting the subset data
entries Dl in the l-th request. For each data entry di, the

current accumulated privacy leakage risk for should be less
than its privacy budget B(di):∑︂

l∈{l|di∈Dl,l=1,...,L}

piL(Asl) ≤ B(di), (2)

where pl = 1 represents rl is approved and vice versa.
The market server tracks the unused privacy budget UL(di)

for data di, where UL(di) is calculated by

UL(di) = B(di)−
∑︂

l∈{l|di∈Dl,l=1,...,L}

plL(Asl). (3)

D. Running Example

We use a running example to illustrate our budgeting
mechanism and its execution process. Let us consider N data
providers PRDi, i = {1, . . . , N}, who want to share their
genes at the form of Single Nucleotide Polymorphism (SNP)
records, denotes as di. We assume PRDi sets privacy budget
B(di) = (5, 10−3) in DP mechanism (i.e., ϵ = 5, δ = 10−3)
due to privacy concerns, and allows di being used on algo-
rithms (e.g., machine learning, genome wide association).

Let SKR1 be a data seeker who sends request r1 =
(1, D1,A1), where A1 trains a model with DP-SGD [1] and
it requires privacy cost L(A1) = (1.26, 10−5), i.e., A1 adds
noise when updating gradient with distribution N (0, δ2C2I)
where δ = 4, C is the clipping threshold of gradient, and
trains 10000 batches for batch size 0.01|D1| according to [1].
After granting r1, market server updates the unused privacy
budget U1(di) = B(di) − L(A1) = (3.74, 9.9 × 10−4) for
i ∈ D1. SKR2 aims to determine if the Hardy-Weinberg Equi-
librium (HWE) applies to a specific allele. She sends request
r2 = (2, D2,A2), where A2 calculate HWE with privacy costs
L(A2) = (1, 10−5) (representing adding Laplace noise with
variance δ2 = 375.6N2

(N+2)2) [13]. The market server then evaluate
r2 and update U2(di) = U1(di)− L(A2) for i ∈ D2.

E. Design Goals and Challenges

We claim the design goals that TEERASE must offer:

G1: Full Life-cycle Confidentiality Guarantee. The main
goal of TEERASE is to prevent the data providers’ sensitive
data from being leaked throughout its entire life-cycle. It
means that any party except the data provider should never be
able to access the plain-text data besides obtaining the results
computed from it.

G2: Efficiently Access Control and Self-Destructing. In
addition, TEERASE wants to reassure data providers that
their data usage and destruction are in accordance with their
predefined privacy budgeting mechanism autonomously and
efficiently. Once a data provider selects her privacy budgeting
mechanism and uploads her data, any actions that violate it
will be limited by TEERASE.

G3: Guaranteed Result Delivery. Previous works either
shared plain-text data [4] or cause incomplete computation
issues [3]. To prevent rollback attacks, [3] validates that a
Token remains exclusively within the private memory along

2023 IEEE Global Communications Conference: Communication & Information Systems Security

2575

Untrusted Market Server

Budget
Manager

TEE
P1: Attest

Budget

Key

Data
Provider

Data
Repository

S2:
Create

Executor

S1:
reqBudget()

Key
Manager

S5:
Result

Delivery

Data

Data Seeker

Executor (TEE)

Data

Keys
Execution
Manager

P4: insertData()

P2: getId()

P3: Send
Encrypted

Data

S4: Attest & reqData()

compute

S4

S3: insertHash()

Extra DataD: Destruction

Result

Fig. 2: The architecture of TEERASE. The Market Server con-
sists of three trusted modules (Budget Manager, Key Manager,
and Execution Manager) and a public Data Repository.

with the decryption key, ensuring that it is executed only
once even if it encounters a failure. TEERASE must ensure
that it complies with privacy regulations while also delivering
computation results.

To achieve G1, TEERASE stores encrypted data in persis-
tent storage and allows decryption only within the enclave.
Computation takes place within TEEs, with the query result
being the only information returned to the data seeker.

To achieve G2, when TEERASE receives (L + 1)th data
request rL+1 = (sL+1, DL+1,AL+1), it only approves rL+1

if there is sufficient remaining privacy budget to cover the cost
of the request, i.e.,

∀di ∈ Dk,UL(di) ≥ L(AsL+1
), (4)

and then the corresponding amount will be deducted from the
unused budget, i.e.,

U (L+1)(di) = UL(di)− L(AsL+1
), di ∈ DL+1. (5)

Once the expiry condition

U (L+1)(di) = 0, di ∈ D (6)

is met (e.g., after a certain period of time or when the
privacy budget is used up), the destruction process commences
immediately to prevent any unauthorized access to di.

To achieve G3, TEERASE adopts asynchronized execution
that separates the budget requests and data access, allowing
multiple computation requests inside TEEs.

IV. SYSTEM DESIGN

A. System Workflow

Fig. 2 shows the workflow of TEERASE and the exe-
cution procedures inside TEE are explained in Algo. 1. In
the beginning, PRDi sets her global privacy budget B(di)
according to her risk tolerance preference. She then attests to
the functionality of the market server enclave for safeguarding
di (P1). Next, she asks the market server to execute getId for
generating a unique Id for di and the encryption key (the key
management will be detailed later in Sec. IV-E). These are sent
back through the secure channel established earlier (P2). With
the received encryption key, PRDi encrypts di and uploads the

encrypted data to the Data Repository (P3). To finish budget
upload process, PRDi calls insertData to update B(di) (P4).

Upon receiving rl = (sl, Dl,L(Asl)), the market server
invokes reqBudget to request the Budget Manager to verify
if U (l−1)(di), di ∈ Dl are sufficient to use (S1). Once the
Budget Manager receives rl where di ∈ Dl retains adequate
budgets, it sends a signal to the Execution Manager. The signal
will also trigger automated data destruction if the data runs
out of the budget (D). Upon approval, SKRsl creates a Trusted
Executor E to load Asl whenever she is ready to compute with
Dl (S2). If SKRsl provides auxiliary data for computation, it’s
necessary to call insertHash to upload its hash value to the
Execution Manager (S3). Before calling reqKey to release the
encryption key of Dl to E, the Execution Manager within the
market server enclave attests E to validate the correctness of
Asl and the consistency of additional data (S4). After fetching
encrypted data and receiving keys, E computes with Dk and
potentially extra data, releasing the result (S5).

B. Budgeting Mechanism

Given di, we aim to propose a privacy budgeting mechanism
that bridges the gap between L(Aj), B(di), and U(di). We
categorize B(di) and U(di) into general budgets and algorithm
dependent budgets. General budgets are those can be adapted
to different algorithms, e.g., the number of accesses and (ϵ, δ)
in DP. There are various methods for calculating L(Aj) for
different Aj(e.g., the example described in Sec. III-D). The
level of privacy breach L(Aj) is related to each specific Aj .
Hence, when updating U j(di) with Eq. 5, the market server
must pre-quantify L(Aj) based on the type of Aj .

When dealing with algorithm dependent budgets, the deduc-
tion of B(di) is associated with the usage of data (Aj), e.g.,
if PRDi believes that the leakage level of a machine learning
task is related to training hyper-parameters, she may set the
number of maximum training epochs as B(di). Therefore, a
straightforward budget subtracting can be implemented.

As for different budget types of B(di), such as the number
of access and training epochs, TEERASE calculates them
separately, and the self-destructing process is triggered when
any budget meets Eq. 6.

C. Budgeting Integrity Guarantee

Although the unused budgets U are protected by TEEs, it’s
still vulnerable to rollback attacks wherein an attacker reverts
the states of required budgets, resulting in a violation of pri-
vacy constraints. To prevent this, TEERASE introduces mono-
tonic counters inspired by [7]. Specifically, TEERASE main-
tains three types of monotonic counters: ID CTR, BGT CTR,
and KEY CTR. ID CTR tracks the number of assigned data
id, which uniquely determines the encryption key. BGT CTR
tracks all budget updates, including initialization of B(di)
and updates to U(di). KEY CTR tracks the number of data
entries with immutable additional data, to ensure consistency
and indicate the completion of budget consumption. The
increments of counters are displayed in Algo. 1.

2023 IEEE Global Communications Conference: Communication & Information Systems Security

2576

Algorithm 1: Budget Secure Updating Algorithm
1 Initialize ID CTR, BGT CTR, KEY CTR;
/* Initialize storage, master key */

2 MK← KEY GEN(GET RANDOM(), pwd);
3 budgetDict← ∅, hashDict← ∅ ;

/* Prepare Insert Data */
4 Procedure getId(PRDi):
5 Id← INC CTR(ID CTR) ;
6 encKey ← KEY GEN(Id,MK) ;
7 Send(PRDi, encKey, Id);

/* Request Insert Data */
8 Procedure insertData(Id, Enc(dId),B(dId)):
9 assert (Id /∈ budgetDict) ;

10 store Enc(dId);
11 INC CTR(BGT CTR) ;
12 budgetDict[Id]← B(dId);

/* Request Budget Cost */
13 Procedure reqBudget(SKRj , Id,L(Aj)):
14 assert (Id ∈ budgetDict) ;
15 U(dId)← budgetDict[Id];
16 if U(dId) > L(A) then
17 INC CTR(BGT CTR);
18 budgetDict[Id]← U(dId)− L(Aj);
19 hashDict[Id]← (0, Null)
20 else /* Budget Not Enough */
21 Send(SKRj , Rej);
22 end

/* Asynchronization Hash Insertion */
23 Procedure insertHash(SKRj , Id,H):
24 assert (Id ∈ hashDict);
25 (fixF lag, prevHash)← hashDict[Id] ;
26 if fixF lag == 0 then
27 hashDict[Id][1]← hash(prevHash,H);
28 else
29 Send(SKRj , Rej);
30 end

/* Asynchronization Key Request */
31 Procedure reqKey(Id, SKRj ,H):
32 assert Id ∈ hashDict ;
33 fixF lag, storedHash← hashDict[Id] ;
34 if storedHash == H then
35 if fixF lag == 0 then
36 INC CTR (KEY CTR) ;
37 r ← GET RANDOM();
38 hashDict[Id][0]← r ;
39 else
40 r ← fixF lag;
41 end
42 encKey ← KEY GEN(Id,MK) ;
43 Send(SKRj , r, encKey) ;
44 else
45 Send(SKRj , Rej);
46 end

D. Asynchronized Execution

Previous work [3], [9] cannot guarantee the delivery of
results due to incomplete computations from trusted process
failures. Furthermore, to avoid depleting the privacy budget,
the data seeker may request it in advance but not use it. Simply
separating the budget management and data computation cre-
ates a vulnerability that can be exploited to perform multiple
computations under different conditions.

TEERASE addresses this issue by maintaining a table to
record data ids and extra hashes of outsourced data. The
Market server marks the extra hash immutable and generates a

random number before releasing the key. The random number
as the random seed makes the stochastic computation process
becomes a deterministic process within the executor enclave.
If the market server receives a second data request, e.g., the
computation process fails or the result is lost, it checks the
consistency of outsourced data hash, and then releases the key
and the stored random number (reqKey in Algo. 1). Note that
with the same random seed and algorithm, the computation
over the fixed outsourced data and the provided private data
is deterministic, which will not violate the budget restriction.

E. Data Storage and Key Management

TEEs with limited hardware-protected memory regions in-
troduce expensive page swaps. It’s common to encrypt private
data, store the encrypted data outside the enclave, and keep
only the encryption key within the enclave. However, using
a single key may increase the risk of key compromise, while
maintaining different keys for each data could also drain the
limited memory space. Thus, we adopt a deterministic key
derivation function (KDF) that uses a master key and unique
data IDs to generate the corresponding encryption keys.

Except for encryption keys, there are also unused budgets
U and outsourced data hash H need to be stored inside
protected memory. We apply L2-Cache to lower the memory
footprint and implement keyed hash values (i.e., Message
Authentication Codes, MACs) for protecting the integrity of
data entries upon eviction from the protected memory region.
Note that it’s optional to encrypt the entries to protect the
confidentiality of U and H, depending on the security level
PRDi required. We organize (Id,U(di),H) into pages as data
items to calculate the hash. The MAC is calculated from
the page item, page size, and an IV/counter, protecting data
stored in unprotected memory from unauthorized modification.
Inspired by [5], TEERASE maintains in-enclave MAC hashes
instead of maintaining a Merkle Tree.

In summary, in our design, only the master key, MAC of
U and H, and their cache stay within the enclave memory to
keep a low memory footprint.

V. EVALUATION

Implementation. We implemented a prototype of TEERASE
considering a realistic scenario where data providers share
their genes for Genome-Wide Association Study (GWAS). It
offers four types of GWAS: LD, HWE, CATT, and FET [10].
Each type supports two budgeting mechanisms: the number of
access times and DP [13]. To port GWAS inside enclaves, we
preprocess SNPs in the market server with [6].

Our prototype employs multi-threading to optimize per-
formance, assigning worker threads to process encryption/
decryption data files and privacy budget updates based on
their ID hash to reduce the need for thread synchronization.
We generate the master key using the BPKDF2SHA512
algorithm and derive child keys using the BIP32 protocol.
The implementation is based on SGX SDK 2.17, with IPP
Cryptography Library and OpenSSL Library for encryption
and hashing.

2023 IEEE Global Communications Conference: Communication & Information Systems Security

2577

TABLE I: Response time comparison for different number of
worker threads.

Threads reqBudget (ns) reqKey (ns) insertHash (ns)

2 1030.7 1168.9 606.23
4 454.55 600.83 230.37
6 187.55 334.77 62.71
8 108.80 265.78 28.83

16 72.37 296.16 17.37

Experimental settings. We evaluate TEERASE on the In-
tel Xeon Gold 5318Y processor. The machine runs Ubuntu
20.04.5 LTS 64 bit with Linux kernel 5.15.0. We use the
dataset from 1, 000 Genomes Phase 3 [11] for GWAS. This
dataset comprises 493, 463 SNPs that were gathered from 273
participants. The seeker machine simulates 32 concurrent users
that generate requests for private data.

Evaluation Results. To quantify the effectiveness of multi-
threading optimization, we measure TEERASE’s performance
with varying numbers of worker threads. Table I shows the
response time of the server when receiving requests outlined
in Algo. 1: requesting privacy budget, inserting outsourced
hash, and requesting encryption keys for private data. The
comparison shows that our paralleling design significantly
reduces the response time for all operations.

Fig. 3a reports the time taken by a data seeker for various
stages, including creating a secure communication channel,
pre-processing, budget requesting, private data requesting, and
the execution of GWAS analysis. The breakdown is shown in
relation to the number of data entries requested. In particular,
establishing a secure session (attestation) takes an average
of 403.6 ms, which becomes the heaviest workload when
requesting a single data entry. When a data seeker requests
an increasing number of data entries, the latency remains
relatively constant if the request size is less than 100 entries.
Even when requesting 2, 000 data entries, it only takes five
times longer than requesting one entry.

In our implementation, data entries shared by one provider
are assigned with adjacent data ids, causing space continuity
of privacy budgets. We called data entries whose budgets are
stored next to each other “adjacent data”. Fig. 3a demonstrates
that the latency remains consistent regardless of whether data
seekers make random or adjacent data requests.

Fig. 3b demonstrates the average response time for each
data entry when data seekers request different amounts of data
entries. As the number of requested data entries increases, both
the average key request time and budget request time decrease.
However, the pre-processing time required to generate request
packages gradually increases.

VI. CONCLUSION

In this paper, we propose TEERASE to address the issue
of massive private entries sharing. TEERASE empowers data
providers to regain control over their released data. The su-
pervised usage and destruction of private data prevent the data
seeker from violating the budgeting mechanism thus limiting
the risk of exposing a particular entry.

ra
nd

-1
co

nt
i-1

ra
nd

-5
co

nt
i-5

ra
nd

-1
0

co
nt

i-1
0

ra
nd

-2
0

co
nt

i-2
0

ra
nd

-5
0

co
nt

i-5
0

ra
nd

-1
00

co
nt

i-1
00

ra
nd

-5
00

co
nt

i-5
00

ra
nd

-1
00

0
co

nt
i-1

00
0

ra
nd

-2
00

0
co

nt
i-2

00
0

Requested number of data entries per client

0.0

0.5

1.0

1.5

2.0

2.5

Ex
ec

ut
io

n
tim

e
(n

s)

1e9

create-session
preprocess
reqBudget
reqKey
GWAS execution

(a) Total response time.

ra
nd

-1
co

nt
i-1

ra
nd

-5
co

nt
i-5

ra
nd

-1
0

co
nt

i-1
0

ra
nd

-2
0

co
nt

i-2
0

ra
nd

-5
0

co
nt

i-5
0

ra
nd

-1
00

co
nt

i-1
00

ra
nd

-5
00

co
nt

i-5
00

ra
nd

-1
00

0
co

nt
i-1

00
0

ra
nd

-2
00

0
co

nt
i-2

00
0

Requested number of data entries per client

0

1

2

3

4

5

6

7

Ex
ec

ut
io

n
tim

e
(n

s)

1e6

preprocess
reqBudget
reqKey
GWAS execution

(b) Average response time.

Fig. 3: Data seeker’s requests with varying data entries.

ACKNOWLEDGMENT

The work was supported by National Key R&D Program of
China under Grant No. 2022YFB3103500 and National Natu-
ral Science Foundation of China under Grants No. 62132013.

REFERENCES

[1] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Tal-
war, and L. Zhang, “Deep learning with differential privacy,” in 23rd
ACM CCS, 2016, pp. 308–318.

[2] V. Costan and S. Devadas, “Intel sgx explained,” Cryptology ePrint
Archive, 2016.

[3] M. Gao, H. Dang, and E.-C. Chang, “TEEKAP: Self-expiring data
capsule using trusted execution environment,” in 38th ACSAC, 2021,
pp. 235––247.

[4] R. Geambasu, T. Kohno, A. A. Levy, and H. M. Levy, “Vanish:
Increasing data privacy with self-destructing data.” in 18th USENIX
security, 2009, pp. 10–5555.

[5] T. Kim, J. Park, J. Woo, S. Jeon, and J. Huh, “Shieldstore: Shielded in-
memory key-value storage with sgx,” in Proceedings of the Fourteenth
EuroSys Conference 2019, 2019, pp. 1–15.

[6] C. Kockan, K. Zhu, N. Dokmai, N. Karpov, M. O. Kulekci, D. P.
Woodruff, and S. C. Sahinalp, “Sketching algorithms for genomic data
analysis and querying in a secure enclave,” Nature methods, vol. 17,
no. 3, pp. 295–301, 2020.

[7] S. Matetic, M. Ahmed, K. Kostiainen, A. Dhar, D. Sommer, A. Gervais,
A. Juels, and S. Capkun, “ROTE: Rollback protection for trusted
execution,” in 26th USENIX Security, 2017, pp. 1289–1306.

[8] J. Niu, W. Peng, X. Zhang, and Y. Zhang, “Narrator: Secure and practical
state continuity for trusted execution in the cloud,” in 29th ACM CCS,
2022, pp. 2385–2399.

[9] Z. Ren, X. Li, S. Xu, and Y. Tong, “Restricting the number of times
that data can be accessed in cloud storage using trustzone,” in 2022
22nd IEEE International Symposium on Cluster, Cloud and Internet
Computing (CCGrid). IEEE, 2022, pp. 289–296.

[10] M. N. Sadat, M. M. Al Aziz, N. Mohammed, F. Chen, X. Jiang, and
S. Wang, “Safety: secure gwas in federated environment through a
hybrid solution,” IEEE/ACM transactions on computational biology and
bioinformatics, vol. 16, no. 1, pp. 93–102, 2018.

[11] N. Siva, “1000 genomes project,” Nature biotechnology, vol. 26, no. 3,
pp. 256–257, 2008.

[12] Y. Tang, P. P. Lee, J. C. Lui, and R. Perlman, “Secure overlay cloud
storage with access control and assured deletion,” IEEE Transactions on
dependable and secure computing, vol. 9, no. 6, pp. 903–916, 2012.

[13] F. Tramèr, Z. Huang, J.-P. Hubaux, and E. Ayday, “Differential privacy
with bounded priors: reconciling utility and privacy in genome-wide
association studies,” in 22nd ACM CCS, 2015, pp. 1286–1297.

[14] R. Wang, Y. F. Li, X. Wang, H. Tang, and X. Zhou, “Learning your
identity and disease from research papers: information leaks in genome
wide association study,” in 16th ACM CCS, 2009, pp. 534–544.

[15] J. Wei, X. Chen, J. Wang, X. Huang, and W. Susilo, “Securing fine-
grained data sharing and erasure in outsourced storage systems,” IEEE
Transactions on Parallel and Distributed Systems, vol. 34, no. 2, pp.
552–566, 2023.

2023 IEEE Global Communications Conference: Communication & Information Systems Security

2578

