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Abstract—Visual (V) surveillance systems are extensively de-
ployed and becoming the largest source of big data. On the
other hand, electronic (E) data also plays an important role
in surveillance and its amount increases explosively with the
ubiquity of mobile devices. One of the major problems in
surveillance is to determine human objects’ identities among
different surveillance scenes. Traditional way of processing big V
and E datasets separately does not serve the purpose well because
V data and E data are imperfect alone for information gathering
and retrieval. Matching human objects in the two datasets can
merge the good of the two for efficient large-scale surveillance.
Yet such matching across two heterogeneous big datasets is
challenging. In this paper, we propose an efficient set of parallel
algorithms, called EV-Matching, to bridge big E and V data. We
match E and V data based on their spatiotemporal correlation.
The EV-Matching algorithms are implemented on Apache Spark
to further accelerate the whole procedure. We conduct extensive
experiments on a large synthetic dataset under different settings.
Results demonstrate the feasibility and efficiency of our proposed
algorithms.

I. INTRODUCTION

Visual surveillance is a major way to monitor people’s

locations, behaviors and activities. Surveillance cameras are

widely deployed in public places, especially in safety-sensitive

areas, and the amount of cameras is huge. According to

reports, there is one surveillance camera for every 14 people

in Britain, and at least 24, 000 cameras have been installed

in Chicago [11]. Surveillance videos have become the biggest

big data we need to deal with.
Electronic data also plays an important role in surveillance.

Currently, there are roughly 6 billion active cell phones in the

world [20]. Almost every person has one or multiple electronic

devices, including mobile phones, tablets and laptops. These

devices constantly emit electronic signals to communicate

with network infrastructure. These signals carry the holder’s

electronic identity (EID), such as IMSI for GSM, UMTS and

LTE, WiFi MAC and Bluetooth ID which can be utilized to

locate and track the device holder in surveillance systems.
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For surveillance applications, one of the major problems is

how to precisely determine human objects’ identities among

different surveillance scenes. Traditionally, visual (V) data

and electronic (E) data are processed separately for such

purpose. However, V data and E data are imperfect alone

for information gathering and retrieval. Yet they are highly

complementary to each other for surveillance purposes. V data

is intuitive and accurate but searching through the massive

videos, either by human operators or through computer vision

techniques, is inefficient. Compared with V data, E data is

relatively light-weight, and electronic surveillance based on

localization and tracking is readier to be carried out. But

the propagation of E signal is highly dependent on a good

transmission environment. The range error of E localization

is relatively large. According to the characteristics of E and

V data, we can merge the good of both worlds for efficient

large-scale surveillance.

In this paper, we study the combination of E data and V
data for better surveillance. Informally put, we want to find

the visual images (visual identity or VID) of a person carrying

a specific mobile device in massive surveillance videos. For

example, a crime happened and the police have the EIDs

appearing around the crime scene when it occurred. They

want to figure out the activities of these EIDs’ holders in

surveillance videos over previous months in order to find

the suspects. Technically we intend to match the EIDs in

electronic location logs with VIDs in surveillance videos. With

this matching, we are further able to fuse these two big and

heterogeneous datasets, and retrieve the E and V information

for a person at the same time with one single query. We call

this EV-Matching. Spatiotemporal information is what these

two datasets share in common and what we utilize to perform

the fusion. To deal with these two EV datasets which are

hugely diversified in quality and processing, a two-stage E-

filtering and V-identification strategy was proposed to reduce

the visual processing burden and get accurate matching results

in [24]. However, this method only works on single EID-VID
matching and it does not work in fusing big EV datasets. Naive

parallelization of this algorithm to make multiple machines

work on different EID-VID pair brings no further benefit

because of duplicated computation during the matching.

We design distributed algorithms to streamline efficient

and accurate EV-Matching. We develop the EID set splitting
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algorithm to reduce the processing burden of V data. The E
location dataset is firstly processed and a fraction of video

frames where each EID may appear are selected. Then the

common VIDs appearing in the video frames filtered in the

previous stage will be figured out as the matched VIDs of

the corresponding EIDs. We call this stage VID filtering. With

EV-Matching, multiple EID-VID pairs can be matched at the

same time. In fact, a large portion of the video frames selected

with the EID set splitting algorithm can be reused for other

EIDs. This will further reduce the processing burden of V data.

We extend the whole procedure to a distributed version and

implement it with MapReduce.

Moreover, our EV-Matching algorithm also supports elastic

matching sizes. This is very important for surveillance because

the EID-VID range of interest may be different, from a single

person to the entirety of people in a city. With this algorithm,

we can find the VID corresponding to one specific EID without

matching other EIDs and VIDs. We can also choose to match

multiple EID and VID pairs simultaneously, or even achieve

universal dataset matching. Universal matching is the extreme

case, which actually gets each VID in the whole videos labeled

with its corresponding EID. After universal labeling, it will

be more efficient to do future queries because all the EV raw

data has been processed and indexed. Note that the larger the

matching size is, the less time it costs per EID-VID pair.

Though our goal is to explore the problem of fusing large

surveillance visual data and electronic data, we start with

a simplified and clean model. Our EV-Matching algorithm

assumes the EID and VID are both readily available for the

person of interest. However, such assumption is not always

true in real-world environment. For example, some people

do not carry any electronic device so they have no EIDs.

Also, due to occlusion or imperfect vision algorithms, we may

fail to extract the VIDs for some people. In such situations,

we adapt our algorithm and try to get the best matching

results. Although human intervention may be involved, our

EV-Matching can still shoulder human’s workloads.

In short, we have the following key contributions:

– We design the EV-Matching algorithm to fuse big EV
datasets for efficient large-scale surveillance. EID set splitting

is developed to reduce the visual processing burden. Practical

settings are also considered to accommodate our algorithms

to real-world situations.

– The whole matching procedure is extended to the MapRe-

duce framework. We utilize the mechanism of (key, value)
shuffle in MapReduce to implement the key operation in our

algorithms. This design not only improves the time-efficiency

in a parallel way, but also reduces the visual processing burden

because of the overlap in filtered video frames.

– Our algorithm supports single, multiple and universal

EID-VID matching. Multiple EIDs can be matched to their

corresponding VIDs simultaneously. Even universal labeling

can be performed in an efficient way.

– We implement our algorithm on Apache Spark [2]. Large-

scale evaluations are conducted on a 14-node cluster and the

results demonstrate the matching accuracy and efficiency of

our algorithm.

The rest of this paper is organized as follows. Section II

reviews related work. Section III introduces the problems we

are going to address. Section IV details our EV-Matching algo-

rithm design and Section V presents algorithm parallelization

with MapReduce. Section VI reports our experiment results.

Finally, Section VII concludes this paper.

II. RELATED WORK

Efficient large-scale surveillance systems have been a hot

research area in recent years. There are three categories of

related work.

A branch of video surveillance research particularly of

interest is human re-identification. Re-identifying the person

from different camera views is the basis for consistent labeling

across multiple cameras [3]–[6]. Ding et. al. [8] propose M-

Clip for retrieving human objects among large surveillance

videos. Doretto et. al. [9] discussed the human re-identification

problem in camera networks and used appearance-based algo-

rithms to address visual surveillance needs. Zhao et. al. [27]

used mid-level filters learned from patch clusters to identify

visual patterns and distinguish persons. Yang et. al. [26] fused

the color distributions over different color names to generate

features for human re-idenfication.

More similar to our work are approaches that fuse sens-

ing data from multiple sensors for identifying or tracking

people. Fan et. al. [15] proposed a particle-filtering based

motion sensor fusion approach for self-tracking. Roetenberg

et. al. [21] proposed a system that consists of magnetic sensors

and inertial sensors for motion tracking. Teixeira et. al. [22],

[23] leveraged the existing camera infrastructure with initial

sensors to identify and localize people. There are also some

literatures focusing on electronic and visual sensing data.

Teng et. al. [24] proposed an electronic and visual sensor

fusion based system to identify an object’s appearance model

from visual data. Papaioannou et. al. [19] proposed an indoor

positioning system which fuses visual detections captured by

camera infrastructure with WiFi radio data. EV-Linker [10]

and IdentityLink [18] both tried to link the device with the

user by leveraging eavesdropped wireless data and visual

signals. Li et. al. [14] implemented ForeSight system which

can dynamically integrate the information observed in the

visual domain and the electronic domain to match the vehicles

observed with high accuracy.

Big spatial data fusion on moving objects aims to efficiently

process a database on moving objects and their locations.

The key problems include: location model (imprecision of

localization), indexing (R-tree, Quadtree), spatial and temporal

range query and object dynamics (information update). There

are works on clustering of moving trajectories for traffic

shedding [13] and extensive queries [25]. Recent works [1]

consider Hadoop-GIS on MapReduce. The main challenges

are skew of spatial data (load imbalance) and objects in the

boundaries (inaccurate results). Online profiling [16] can be

used to improve load balance in big data processing platforms.
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III. PROBLEM DEFINITION

Electronic data and visual data are pervasive and both of

them can be leveraged to capture people’s positions in public

places. For example, base stations can sense and estimate a

mobile phone user’s location, which can be called E-Location.

Meanwhile, public cameras can capture human figures and

estimate their real-world locations, which can be called V-
Location. Within a period of time, such as one day, one

EID’s E-Locations accumulate and an entire E-Trajectory is

generated. V-Trajectory is a linkage of the V-Locations of a

single person with human re-identification or visual tracking

methods. Then one person has one E-Trajectory, if the person

uses only one phone in this period of time, and multiple V-
Trajectory segments, because of occlusions and appearance

variations. If we want to match some EIDs with their corre-

sponding VIDs, we need to associate E-Trajectories and V-
Trajectories of a group of people in large temporal and spatial

scale.

Next, we describe the data we consider in this paper, and

the problem we are trying to deal with.

A. Data description

– Raw E-Data: It contains EIDs (e.g., IMSI, WiFi MAC)

and timestamps when these EIDs were captured. E-Locations

can be estimated using the position of the devices or base

stations that capture these EIDs, or using other localization

methods if more information is available, such as electronic

signal strength.

– Raw V-Data: Basically, it contains timed video data.

VID and their locations can be extracted from videos. Such

extraction can be very time intensive.

B. Problems

We have a large amount of E-Data and V-Data generated by

the same group of people across different time periods within a

large area. We are trying to deal with the following problems:

– Matching: How to match the same person’s EID and VID.

To begin with a clean matching model, we have the following

assumptions:

1) VID consistency: In a period of time, we can successfully

extract the same VID with some methods (such as appear-

ance similarity) with a high probability.

2) VID completeness: When the EID of a person is recorded,

we assume the VID of the same person is also in V dataset.

(We will weaken this assumption in practical settings in

Section IV.)

From the first assumption, we can connect the V-Locations of

the same person to generate the V-Trajectory. Meanwhile, we

have each EID’s location records at different timestamps. This

kind of spatiotemporal information is able to distinguish one

EID’s large-scale trajectory from the others’ (two people are

rarely at the same position all the time). Based on this and the

second assumption, we can find the VID which is most likely

to have the same trajectory with this EID, and matching is

accomplished.

– Parallel Processing: How to parallelize the matching

procedure to match multiple people at one time on a large-

scale EV dataset. This is also a big data problem. We aim to

implement our algorithm in MapReduce framework which is

one of the most popular frameworks for big data processing.

When using MapReduce, we need design proper map and

reduce functions to fit our matching algorithms into the

distributed framework.

The problems of matching and parallel processing will be

addressed in Section IV and V, respectively.

IV. EV-MATCHING ALGORITHM

In this section, we first explain how we try to tackle this

Matching problem. Next, we propose algorithms for both ideal

and practical settings, followed by necessary analysis.

A. Preliminaries

Directly extracting all information such as E-Locations and

V-Locations for matching is too time consuming, which is

undesirable. To mitigate this problem, we propose to use

“rough” E-Locations and V-Locations to select a small portion

of the whole data, and perform detailed extraction only on this

portion of data. So we introduce the concept of EV-Scenario.

Definition 1. EV-Scenario is a snapshot of the EID and VID
sets appearing in a specific spatial region at a single time

point. It is comprised of E-Scenario (with EID set only) and

V-Scenario (with VID set only).

We divide the whole spatial region into a bunch of smaller

regions that we call scenarios. A scenario can be the region

covered by one camera, the region of one room covered by

several cameras or even a hexagonal cell if we generate the

view of the whole region by combining the views of all

cameras and divide it uniformly as shown in Figure 1. As

described in Section III, all E-Data and V-Data are embedded

into EV-Scenarios. At a single time point, EIDs appearing

in one scenario make up an E-Scenario. An E-Scenario’s

corresponding V-Scenario is the set of VIDs appearing simul-

taneously in the same scenario. An E-Scenario together with

its corresponding V-Scenario comprise an EV-Scenario.

Fig. 1: EV scenario

After introducing the concept of EV-Scenario, matching

EID and VID by comparing the whole E-Trajectory and V-
Trajectory becomes matching the “sub-trajectories” of EID
and VID. That is, to find a list of EV-Scenarios such that only
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one EID and one VID appear in all these EV-Scenarios, and

we can match them safely.

However, searching for such a list of EV-Scenarios for each

person separately may be not efficient enough because extract-

ing information, especially VID, is very time consuming. If we

can reuse EV-Scenarios for different people, the efficiency will

be improved. The basic idea is that one EV-Scenario can help

distinguish all people inside the EV-Scenario from all those

outside. So one V-Scenario has the potential to be reused by

all EIDs contained in the corresponding E-Scenario. And we

only need to process this V-Scenario once.

Another idea to further reduce the number of EV-Scenarios

we need: VIDs that have been already matched may help

distinguishing those remain unmatched. For example, consider

such two E-Scenario : one contains EID1 and EID2 and

the other contains only EID1. Matching EID1 and V ID1 is

simple because the only V ID1 in the second V-Scenario can

be safely matched to EID1. To match EID2, we can get its

corresponding V ID2 from the first V-Scenario by ruling out

V ID1 that appears in the second V-Scenario.

Ideally we assume the consistency between EIDs and VIDs.

That is, if a person appears in one scenario, his or her EID and

VID are exclusively contained in exact one same EV-Scenario
at one time point.

We deal with this ideal case first and discuss the practical

settings afterwards.

B. Algorithm for Ideal Setting

Under the ideal setting, if only one EID appears throughout

a list of E-Scenarios, only one VID would appear throughout

the list of corresponding V-Scenarios, and vice versa. Since

dealing with E-Data is much faster than V-Data, we have the

following scheme for EV-matching.

Our scheme has two stages: E stage (dealing with E-
Scenarios) and V stage (dealing with V-Scenarios). In E stage,

EID set splitting is performed to get a list of E-Scenarios for

each EID such that each E-Scenario list can distinguish the

corresponding EID from others. Then the VID corresponding

to each EID can be extracted from the corresponding V-
Scenario list by VID filtering in V stage.

1) EID Set Splitting: In this stage, we try to find a list of

E-Scenarios for each EID to distinguish them. The basic idea

is that one E-Scenario can distinguish the EIDs within it from

the rest. We introduce set splitting mechanism to achieve this

goal.

Denote a group of EIDs that are undistinguishable with each

other by a set with these undistinguished EIDs as its elements.

Initially, all EIDs are in one set because no information is

available to distinguish them. One E-Scenario can split one

undistinguishable EID set into to two undistinguishable EID
sets: one containing EIDs from the original set that appear

in the E-Scenario and the other containing the rest EIDs in

the original set. We call this procedure set splitting. Such

splitting operations can be performed iteratively. Notice that

during the set splitting procedure, each EID is contained in

one and only one set. We call the set that consists of all these

undistinguishable EID sets a partition. At the beginning, the

partition contains only one undistinguishable EID set which

contains all EIDs. By the end of the algorithm, hopefully,

each set in the partition contains only one EID. And a list

of E-Scenarios that can distinguish each EID can be found

accordingly. Following are the notations and algorithms are

presented in Algorithm 1.

– Ueid = {EID1, EID2, · · · , EIDn} is the universal set

of EIDs

– Peid is a partition on Ueid, P = {A1, A2, · · · , Ak},⋃k
i=1 Ai = Ueid, and ∀i �= j, Ai

⋂
Aj = ∅, each Ai is an

undistinguishable EID set

– C is an E-Scenario. It is presented as a set of EIDs

appearing in the E-Scenario
– Ssce = {C1, C2, · · · , Cm} is the universal set of E-

Scenarios.

Algorithm 1 Algorithm for ideal setting

MAIN()
ES = SetSplit({Ueid}, Ssce)
return V Filter(ES)

SetSplit(Peid, Ssce)
while ‖Peid‖ < n & Ssce �= ∅ do

select C from Ssce

Ssce = Ssce\{C}
Peid = SplitBy(Peid, C)
if Peid changes then

Record C
end if

end while
return Recorded Cs

SplitBy(Peid, C)
P ′ = ∅
for A ∈ Peid do
A′ = A

⋂
C

P ′ = P ′ ⋃{A′, A \A′}
end for
return P ′

Remark. If an EV-Scenario can not effectively split one set,

which may happen when the EV-Scenario contains all the EIDs

in the set or none, such EV-Scenario will be skipped. Only

effective EV-Scenario will be recorded.

2) VID Filtering: After EID set splitting, we get a list of

effective E-Scenarios for each EID. This list can be treated

as a large-scale, course-grained trajectory of this EID and

no other EIDs share the same trajectory. Then it is possible

to find the VID corresponding to this EID with person re-

identification methods because this VID is supposed to be

the only one having the same trajectory with this EID. In

each corresponding V-Scenario on this trajectory, several hu-

man figures can be extracted with human detection methods.

Appearance or even gait features [12] of each VID can be
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obtained. The similarity of two VIDs sim(V ID1, V ID2) is

defined in Equation 1. fV ID represents the feature vector of a

specific VID and dist(f1, f2) is the normalized vector distance

between f1 and f2.

sim(V ID1, V ID2) = 1− dist(fV ID1
, fV ID2

) (1)

VID similarity reflects the probability that two VIDs rep-

resent the same person. Let P (V ID1 = V ID2) denote the

probability that two VIDs represent the same person. P is

positive-correlated with sim, but it is difficult to define the

conversion function from sim to P . Assuming there are k
VIDs in a scenario S: V ID1, V ID2, · · · , V IDk, we can

simplify the probability that one VID, say V ID�, is in S
to P (V ID� ∈ S) = maxi=1,··· ,k{sim(V ID�, V IDi)}, and

the probability that V ID� is not in S to P (V ID� /∈ S) =
1−maxi=1,··· ,k{sim(V ID�, V IDi)} [24].

If for an EID*, the scenario list selected from EID set

splitting algorithm is {S1, S2, S3} and we know that the

corresponding V ID� appears in S1 S2 and S3. Then for each

VID in these scenarios, P (V ID = V ID�) = P (V ID ∈
S1)P (V ID ∈ S2)P (V ID ∈ S3). In every scenario, we

choose the VID with the largest probability to be V ID� as

the final result.

So far, we successfully match EID* with corresponding

V ID� after processing only a few V-Scenarios. This procedure

can be repeated for other EID-VID matching.

C. Algorithm for Practical Setting

1) Practical Settings: In real world situation, E-Scenarios

and V-Scenarios are not necessarily consistent, i.e. the EID and

VID of the same person may not be in the same EV-Scenario.

Major practical issues are as follows:

– Drifting EID: Some EIDs may appear in wrong E-
Scenarios (neighbor cell) because of electronic noise. This is

possible especially for those who are actually located near the

boundary of a scenario.

– Missing EID: For people who do not carry any electronic

device, they have no EID. This will result in some additional

VIDs appearing in V-Scenario lists when matching other EIDs

with their corresponding VIDs.

– Missing VID: Due to occlusion and miss detection, we

may fail to extract the VIDs corresponding to a EID from

some V-Scenarios.

In this setting, the previous algorithm can not be applied

directly. Modifications are needed. We propose vague zone
in EID Set Splitting to deal with drifting EID and matching
refining process to handle missing EID and missing VID.

2) EID Set Splitting: Due to electronic noise, some EIDs

may be slightly out of the scenarios which they should be

in. To tackle this problem, we introduce vague zones in the

scenarios. As shown in Figure 2, the area of a scenario is

divided into two parts: inclusive zone (the region far from the

border) whose EIDs are considered confidently included in

this scenario, vague zone (the region near the border) whose

EIDs are also included and are marked as vague (which means

that it is not sure if the EIDs should appear in this scenario).

The area outside the vague zone (outside of the scenario) is

denoted as exclusive zone whose EIDs are excluded from this

scenario.

Accordingly, we slightly modify the definition of EV-
Scenario by extending one single time point to a certain period

of time. Specifically, we count the occurrence of EIDs within

this time period. The EIDs which appear mostly are considered

in the inclusive zone, the ones who appear adequately are

considered in the vague zone, and the ones who appear

occasionally are considered in the exclusive zone. Each EID
within an EV-Scenario is associated with an attribute value

which is either inclusive or vague indicating whether the EID
is in the inclusive zone or vague zone.

Fig. 2: Vague zone of scenario in spatial domain

Next, we describe our algorithm. Intuitively, we should try

to avoid using EV-Scenarios with the target EID in the vague

zone to distinguish that EID. So when performing set splitting,

we should not simply split one set into two sets as previous

mentioned. In fact, we focus on splitting the EIDs that are

inclusive both in the original set and the given E-Scenario.

One example is shown in Figure 3.

Fig. 3: An example of algorithm for practical setting

3) VID Filtering: After EID set splitting, we get a list of

effective E-Scenarios for each EID. Due to introduction of

vague zone, the corresponding VID may or may not show up

in the corresponding V-Scenarios. Notice that for the list of

effective E-Scenarios of a given EID, this EID only appears

in the inclusive zone or the exclusive zone. We can use the

same similarity measurement as in the ideal setting. However,

we may not get acceptable result in one run because of the

practical issues we mentioned before. We need some refining

mechanism.

4) Matching Refining: VID missing is the the most chal-

lenging problem for VID filtering. The performance depends

on the missing rate. If missing rate is 0, it becomes the the
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ideal setting. But if the missing rate is relatively high, VID
filtering may fail to find the right VID. To handle this, we can

collect the corresponding EIDs of these undistinguished VIDs

and go through the EID set splitting and VID filtering again to

refine the result until it is acceptable. However, if missing rate

is too high, human intervention may be required to manually

find the right VID.

Algorithm 2 Algorithm for matching refining

MAIN()
Peid = {Ueid}
while true do
ES = SetSplit(Peid, Ssce)
MM = V Filter(ES)
if MM is acceptable then

break
end if
update Peid

end while
return MM

D. Algorithm Analysis

We first analyze the correctness and complexity of the EID

set splitting algorithm for ideal setting.

1) Analysis for Ideal Setting: Correctness of the algorithm

is proved as follows.

Theorem 4.1. In ideal setting, with the E-Scenarios recorded

by the end of Algorithm 1, all EIDs can be distinguished in

order if there are adequate EV-Scenarios generated from EV
datasets.

We sketch the proof here. We use a binary tree to demon-

strate the status of the set splitting procedure:

– Each node represents an undistinguishable EID set. The

tree root represents the initial set which contains all EIDs;

– One effective E-Scenario splits one node (set) into two

nodes (sets): left child contains the EIDs appearing in the E-
Scenario and right child contains the rest;

– By the end of the algorithm, each leaf node contains only

one EID.

The post-order traversal of this binary tree gives a order

according which all EIDs can be distinguished, the process is

as follows:

– For the left-most child (it should be a leaf according to

the splitting process), we can distinguish the EID by looking

for the intersection of the E-Scenarios used to split all its

ancestor nodes since the EID is the only one appearing in all

these E-Scenarios.

– Exclude the distinguished EIDs from all the nodes and

recorded E-Scenarios. The left-most node will become an

empty set, delete it. The set contained in the parent node of

the deleted node will become identical with the set contained

in its right child node. So merge the parent node and its

right child node. After these exclusion, deletion and merge

operations, the binary tree and all recorded E-Scenarios will

become a solution to the subproblem of distinguishing all the

EIDs except for the distinguished EID.

– Repeat previous two steps until all EIDs are distin-

guished.

Now we analyze the efficiency of the algorithm.

Theorem 4.2. In ideal setting, log(n) � (n − 1) effective E-
Scenarios are adequate to distinguish n EIDs.

We sketch the proof here.

– Lower bound: Given an E-Scenario, there are only two

cases for each EID: appear or not. So log(n) E-Scenarios can

distinguish n EIDs at most. However, such lists of E-Scenarios

do not always exist.

– Upper bound: Consider the number of sets in the parti-

tion. At the beginning, the partition contains one set (with all

n EIDs). Each effective scenario increase the number of sets

in the partition by at least one. The maximum number of sets

in the partition is n (each set contains exactly one element).

So (n− 1) effective scenarios are sufficient to distinguish all

n EIDs.

Note that this efficiency is very important to reduce the

visual processing burden.

2) Analysis for Practical Setting: Since there may be

multiple vague EIDs in multiple sets, the whole EID distin-

guishing process slows down. More E-Scenarios are needed to

distinguish EIDs according to the percentage of vague EIDs.

Correctness of the algorithm is proved as follows.

Theorem 4.3. In practical setting, with the E-Scenarios

recorded by the end of Algorithm 2, all EIDs can be distin-

guished in order if there are adequate EV-Scenarios generated

from EV datasets.

The proof is similar as the ideal setting. Except that when

one effective E-Scenario splits one node: left child contains

the EIDs appearing in the E-Scenario with inclusive attributes

(if they are inclusive in both the E-Scenario and the original

node) or vague attribute (otherwise), while the right child

contains the rest EIDs with their original attribute and EIDs

appearing in both the E-Scenario and the original node with

vague attribute;

Now we analyze the efficiency of the algorithm.

Theorem 4.4. In practical setting, log(n) � n2 effective E-
Scenarios are adequate to distinguish n EIDs.

– Lower bound: Similar as the ideal setting.

– Upper bound: In the worst case, we need n effective E-
Scenarios to distinguish each EID. So n2 effective E-Scenarios

are sufficient to distinguish all n EIDs.

V. PARALLELIZATION WITH MAPREDUCE

In the large-scale EV matching problem, the dataset usu-

ally has a large spatiotemporal span and its volume is big,

especially for the visual data. We propose to use MapReduce,

one of the most popular frameworks for big data processing,

to parallelize EV matching algorithm. Both EID set splitting

and VID filtering algorithms are implemented in MapReduce

framework.
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Fig. 4: EID set splitting workflow

A. MapReduce Basics

MapReduce is a programming model for processing large-

scale datasets in a distributed way among multiple machines.

Its execution process has four stages: split, map, shuffle and

reduce. The input data is firstly split into smaller chunks

and sent to different machines (mappers). During the map

stage, each chunk is transformed into a (key, value) pair

based on the logic defined in the map function. Then all the

(key, value) pairs from all mappers are shuffled, sorted to put

in order and grouped. In the reduce stage, a few machines

(reducers) aggregate the shuffled pairs with the same key

and output the final results. During the entire process, all

data are stored in an underlying distributed file system. Data

assignment, Map/Reduce task scheduling, and task failure

recovery are managed by a master machine.

B. Parallelization of EID Set Splitting

The set splitting described in Algorithm 1 is a single-thread

procedure and inefficient, because in each iteration only one

scenario is selected and set splitting affects merely the EIDs

contained in that scenario. We consider to fetch a number of

scenarios in each iteration and split the set more efficiently in

a parallel way.

To parallelize the set splitting, we exploit the shuffle of

(key, value) pairs in MapReduce framework to implement set

intersection operation of EID partitions and E-Scenarios. We

break the procedure into four steps, preprocess, map, reduce

and merge. Algorithm 3 defines the functions for the four steps

of one iteration. The worklow of the whole procedure is shown

in Figure 4.

– Preprocess: The input for preprocess are a list of EIDs

which need to be matched with their VIDs, an EID partition

which could be the set Ueid or the result from previous

iteration and a list of E-Scenarios which contains untouched

E-Scenarios in the database. Note that each E-Scenario is

actually an EID set and it has a unique set ID and a times-

tamp. We randomly choose a timestamp and select all the

E-Scenarios with this timestamp. Then we further filter out

the E-Scenarios which do not contain any of the EIDs which

need to be matched. The remained E-Scenarios are integrated

with the latest EID partition into a complete input for next

step.

– Map: The input of the map function is an EID set which is

the element of the output from preprocess. We use the element

Algorithm 3 Algorithm for one iteration

Preprocess

Input: List < EID > eidlist, EIDPartition
eidpart, List < E − Scenario > escelist

eidsetlist1← Filter escelist by a random time stamp

eidsetlist2← Filter eidsetlist1 by eidlist
eidsetlist3← Integrate eidsetlist2 with eidpart
return eidsetlist3

Map

Input: EIDSet eidset
for each eid in eidset do

emit(eid, EIDSetID)

end for

Reduce

Input: EID eid, List < EIDSetID > eidsetidlist
emit(eidsetidlist, eid)

Merge

Input: List < EIDSetID > eidsetislist, List <
EID > eidlist

emit(eidsetidlist, eidlist)

of the EID set as the key and the set ID as the value. Such

(key, value) pairs are emitted as the output of mappers. After

this stage, all the (key, value) pairs with the same EID as the

key will be shuffled to the same reducer.

– Reduce: The reducer receives multiple EID set IDs and

a single EID which appears in the intersection of these sets.

It directly emits a (key, value) pair with the EID set IDs as

the key and the received EID as the value. All these pairs

from many reducers will be aggregated by the key and sent to

merge step.

– Merge: The merge function is similar to the reduce

function. It receives a list of EID set IDs and a list of EIDs

which is the intersection of those sets. In fact, this intersection

is just one element of the new partition. The merger emits

the set IDs and their intersection as the output. Then all the

intersections from all mergers are collected to form a new EID
partition. And set IDs of the scenarios which contribute to the

new partition will be recorded.

So far, one iteration completes and a finer partition of

EID universal set can be fed into the next iteration. After all
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the EIDs are distinguished, which means each of these EIDs

makes up one set by itself in the partition, the EID splitting

stage completes and VID filtering is triggered.

C. Parallelization of VID Filtering

After EID set splitting, a list of E-Scenarios is selected for

each EID. The corresponding V-Scenarios are then selected for

each EID. For VID filtering, we need detect human objects in

the visual data, extract object features and compare the features

to figure out the same VID appearing in the V-Scenarios.

Such processing can be time consuming. To speedup, we use

MapReduce to parallelize human detection and feature extrac-

tion by processing different V-Scenarios on different mappers.

Because these visual operations require no data dependancy.

VID features are computed and stored in distributed storage

system. Then we reorganize the processed V-Scenarios as the

input for another MapReduce procedure. The V-Scenarios in

the selected list of one EID will be conveyed to the same

mapper to do feature comparison. In this way, VID feature

comparisons for multiple EIDs are performed in parallel.

VI. EVALUATION

In this section, we evaluate our proposed algorithm on a

synthetic dataset in real-world clusters. We will present the

results below.

A. Experiment Setup

We set up a cluster with 14 machines. Each machine has a

four-core (2.4 GHz) processor, 8 GB RAM and 2 TB storage.

All machines are connected via gigabit Ethernet over a local

switch. Apache Spark 1.3.1 and Hadoop 2.7.0 are deployed

on each machine.

In our experiments, we have a database with 1000 human

objects each associated with an EID and a VID. All the

VIDs are images of humans from the CUHK02 [17] dataset.

The images are extracted snapshots of humans captured by

cameras from different views. We assign WiFi MAC addresses

to the human objects as their captured EIDs. For EV-Scenario
generation, we randomly choose a number of human objects

from the database and distribute them across a 1000 m ×
1000 m spatial region which consists of several cells. For

mobility, we employ the random waypoint model [7] to control

each human object’s movement in terms of location, velocity

and acceleration change.

B. Evaluation Results

We compare our algorithm with EDP, a baseline method

proposed in [24]. However, EDP can only handle one EID at

one time. For fair comparison with our parallelized method,

we adapt EDP to MapReduce framework by assigning each

mapper one EID matching task. We use two metrics to

evaluate the performance of our algorithm, time efficiency and

accuracy, both of which are key concerns when dealing with

large-scale surveillance data. We have two experiment settings.

In one setting, we change the number of EIDs which need to

be matched. In the other one, we vary the EID density in the

region, i.e., the average number of human objects in each cell.

In the evaluation results, we use SS to denote our algorithm

since it is based on set splitting.

Both of our algorithm and EDP have two stages, E stage and

V stage. E stage selects a bunch of scenarios for each EID and

these scenarios are the input for the V stage. Thus the number

of selected scenarios directly affects the computation time of

the V stage. More scenarios mean more computation. Figure 5

and Figure 6 show the number of selected scenarios under

different number of matched EIDs and different densities.

Note that reused scenario is only counted once. Generally,

our algorithm selects much fewer scenarios than EDP. This is

because our algorithm aims to reuse each selected scenarios

for multiple EIDs while it is highly random for a scenario

selected for one EID to be reused for other EIDs in EDP. In

Figure 6, when the density increases, the number of selected

scenarios by our algorithm decreases and converges around 40,

which is the opposite to EDP. This is because each selected

scenario is more likely to be reused when each cell has more

EIDs. Figure 7 shows the average number of scenarios needed

for each matched EID. We can see that our algorithm needs

about one more scenario for each EID than EDP. This results

in more comparisons of VID features in the V stage of our

algorithm.

Figure 8 and Figure 9 show the results on processing times

including both the processing time for E stage and V stage. We

can see that E stage costs negligible time while the time spent

in V stage dominates the total time because feature extraction

and comparison is more computation intensive. Although more

feature comparisons are needed for each EID, our algorithm

is still faster than EDP because EDP needs to process much

more scenarios in its V stage.

Matching accuracy is defined as the percentage of the

correctly matched EIDs. An EID is correctly matched only

when the majority of the VIDs chosen from the scenarios for

this EID is the right VID. We compare the accuracy of our

algorithm with EDP under different number of matched EIDs

and different densities. The results are given in Table I and

Table II. Over multiple runs for each parameter setting, the

average accuracy rates of our algorithm are over 85% and

comparable with those of EDP.

Matched EIDs 200 400 600 800

SS 92.42% 90.60% 91.50% 89.12%

EDP 93% 92% 88.21% 87.70%

TABLE I: Accuracy with respect to the number of matched

EIDs

Density 30 60 100 160

SS 92.04% 90.22% 88% 87.13%

EDP 91% 87% 89% 88.20%

TABLE II: Accuracy with respect to the density

We also evaluate our matching algorithm and compare it

with EDP under practical settings. We consider two practical

settings, EID missing for example some people do not carry

19931990696



Number of matched EIDs
100 200 300 400 500 600 700 800 900

N
um

be
r 

of
 s

el
ec

te
d 

sc
en

ar
io

s

50

100

150

200

250

300

350

400 SS
EDP

Fig. 5: Number of selected scenarios vs

Number of matched EIDs

Density (number of EIDs per cell)
0 20 40 60 80 100 120 140 160 180

N
um

be
r 

of
 s

el
ec

te
d 

sc
en

ar
io

s

0

100

200

300

400

500

600

SS-100 matched EIDs)
EDP-100 matched EIDs)
SS-600 matched EIDs)
EDP-600 matched EIDs)

Fig. 6: Number of selected scenarios vs

Density

Number of matched EIDs
100 200 300 400 500 600 700 800 900

N
um

be
r 

of
 s

el
ec

te
d 

sc
en

ar
io

 p
er

 E
ID

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

SS
EDP

Fig. 7: Average number of selected sce-

narios per matched EID

Number of matched EIDs
100 200 300 400 500 600 700 800

P
ro

ce
ss

in
g 

tim
e 

(s
)

0

500

1000

1500

2000

2500

SS-E time
SS-V time
SS-E+V time
EDP-E time
EDP-V time
EDP-E+V time

Fig. 8: Processing time vs Number of matched EIDs

Density (number of EIDs per cell)
20 40 60 80 100 120

P
ro

ce
ss

in
g 

tim
e 

(s
)

0

500

1000

1500

2000

2500

3000

3500

4000

SS-E time
SS-V time
SS-E+V time
EDP-E time
EDP-V time
EDP-E+V time

Fig. 9: Processing time vs Density

their phones, and VID missing for example human objects are

miss detected. In Figure 10, we measure the matching accuracy

under different EID missing rates. Generally the accuracy

drops when the EID missing rate rises. However, even when

the missing rate goes up to 50%, the matching accuracy is still

good at around 85%. Figure 11 shows the matching accuracy

under different VID missing rates. We can see that VID missing

has more negative impacts on the matching accuracy. However,

by matching refining, our accuracy is still above 80% even

when the missing rate is as high as 10% which is far below the

state-of-art human detection performance. Also our algorithm

yields better accuracy than EDP.

VII. CONCLUSIONS

In this paper, we propose to match heterogeneous EV data

according to spatiotemporal information to achieve efficient

large-scale surveillance. In the matching procedure, EID set

splitting algorithm is designed to reduce the amount of visual

data to be processed. To cope with the big data problem,

MapReduce is utilized to fuse EV data in parallel. Elastic

matching size is supported by this algorithm and multiple

EID-VID matching can be performed simultaneously. We

implement the distributed algorithms on Spark and test it on a

large synthetic EV dataset. The evaluation results demonstrate

the feasibility and efficiency of our algorithms.
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