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ABSTRACT
Mobile phones equipped with powerful sensors have become
ubiquitous in recent years. Mobile sensing applications pre-
sent an unprecedented opportunity to collect and analyze
information from mobile devices. Much of the work in mo-
bile sensing has been done on designing monolithic appli-
cations but inadequate attention has been paid to general
mobile data collection frameworks. In this paper, we provide
a survey on how to build a general purpose mobile data col-
lection framework. We identify the basic requirements and
present an architecture for such a framework. We survey
existing works to summarize existing approaches to address
the basic requirements. Eight major mobile data collection
frameworks are compared with respect to the requirements
as well as additional issues on privacy, energy and incentives.

Categories and Subject Descriptors
A.1 [General Literature]: Introductory and Survey

Keywords
mobile data; data collection framework

1. INTRODUCTION
In recent years, mobile devices, especially programmable

smartphones, have become ubiquitous. They are usually
equipped with powerful sensors such as accelerometer, gyro-
scope, gravity, GPS, proximity sensor, and general sensors
such as microphone and camera [9, 7, 6, 20, 2, 25]. Thus
researchers are presented with an unprecedented opportu-
nity to track and analyze dynamic information sensed by
smartphones. The applications of mobile sensing are wide
ranging such as traffic and road monitoring, health monitor-
ing, human behavior studies, and environment monitoring
[16]. However, many research focused on the developments
of monolithic programs for specific applications instead of
general purpose frameworks. As one of the challenges in
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mobile sensing, the development of scalable and platform
independent data collection frameworks has not been ade-
quately addressed. Supported by a general purpose frame-
work to collect data, researchers from many fields will be
able to utilize mobile sensing more efficiently and effectively
[19]. We provide a survey on how to build a general pur-
pose mobile data collection framework. We identify four ba-
sic requirements and present a schematic architecture whose
components provide all necessary functionalities. Technical
approaches to address the basic requirements are also sum-
marized based on a comprehensive survey. Complementary
to basic requirements, we also discuss additional issues on
privacy, energy and incentives. Eight major frameworks are
thoroughly compared against the aforementioned require-
ments and additional issues.

In this paper, we claim the following contributions:

• We identify the basic requirements and additional is-
sues for building a general mobile data collection frame-
work. A schematic architecture for the framework is
presented to address the requirements and issues.

• We summarize existing approaches to address the re-
quirements and issues. A comprehensive comparison
of eight major frameworks is also presented. To the
best of our knowledge, this is the first survey focusing
on mobile data collection frameworks.

The rest of the paper is organized as follows. Section 2 de-
scribes the basic requirements and architectural components
for a general mobile data collection framework. Section 3
reviews existing works and discusses existing approaches to
address the requirements. Section 4 discusses additional is-
sues. Section 5 concludes the paper.

2. PRELIMINARIES
In this section, we first use an exemplary mobile data col-

lection scenario to pinpoint the basic requirements for de-
signing a general purpose mobile data collection framework.
Then we present the architecture and describe its compo-
nents in detail.

2.1 Basic Requirements
Let us consider the following scenario. Two researchers

at a university want to study student behaviors. A pro-
fessor specialized in data analysis, Bob, wants to investi-
gate eating habits and study locations of computer science
students during the finals week. Another social science re-
searcher Alice wants to study social patterns of the general
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Figure 1: Schematic Architecture of General Purpose Mobile Data Collection Frameworks

student body, such as association patterns across majors,
throughout an entire semester. Neither researcher is able
to physically monitor their desired targets nor can they ob-
tain accurate data through conventional surveys. Thus they
decide to use the mobile devices owned by students to col-
lect data. In this paper, we define workers as mobile phone
owners who collect data (e.g. students in our scenario), and
clients as researchers or companies who need the collected
data to achieve a specific goal (e.g. Bob and Alice). We also
use clients and (their) applications interchangeably in this
paper.

To collect data efficiently, Bob and Alice may resort to a
general purpose mobile data collection framework instead of
collecting their own data separately. The framework must
satisfy the following basic requirements.

– Task Specification Requirement: The framework must
provide clear and precise means for clients to express their
data collection needs which are called task specifications.
Such specifications might include the type of data to be col-
lected, the amount of data, and the criteria to select workers.
For example, the framework should allow Bob to specify im-
age and location as the data type and data collection should
last for 7 days. For Alice, she can have 200 randomly selected
students at the university and monitor the mutual proximity
and locations of those students for an entire semester.

– Task Managing Requirement: The framework must be
able to automatically distribute data collection tasks to ap-
propriate workers based on task specifications, and keep
track of the progress for each task. In the context of our
example, the framework should coordinate the distribution
of data collection tasks to many students’ phones based on
their eligibility for either Bob or Alice’s research, and mon-
itor the execution status for the two tasks.

– Sensing Requirement: The physical sensing activity should
be carefully controlled by the framework since it is the data
source. The framework should be able to initiate sensors
for data collection, manage sensors, and control sensing fre-
quencies. The framework should also guarantee data accu-
racy once the collection process has started. In our example,
GPS, Wi-Fi, camera and bluetooth should be controlled by
the framework during sensing and the location data should
be accurate.

– Data Managing Requirement: After data are collected,
they must be properly handled by the framework on three

aspects. Firstly, the framework should be able to process
data based on application requirements. Some applications
may require data pre-processing such as noise, error, or vol-
ume reduction. Secondly, the framework should facilitate
data sharing among different applications or devices for effi-
ciency yet not at the expense of worker privacy. Thirdly, the
framework should properly conduct data transmission ac-
cording to clients’ requirements and network availability. In
our example, the framework can aggregate GPS and Wi-Fi
locations before sending them to Bob and Alice. And some
students’ location data can be shared for both researches.
Both researchers may want mobile devices to upload data
when they have Wi-Fi connections.

2.2 Basic Components
Based on literature reviews, we identify basic components

for a general purpose mobile data collection framework. It
is shown in Fig. 1. The framework consists of two parts,
the backend and the frontend. The backend operates on a
local server or the cloud. It is responsible for receiving data
collection requests from clients’ applications, deploying col-
lection tasks to individual mobile devices, and transmitting
the collected data to applications. The frontend is usually on
mobile devices. It receives collection tasks from the backend,
collects sensor data, and sends the data back to the backend.
Detailed functionalities of each component are described as
follows.

2.2.1 Backend Components
The backend has five major components: application in-

terface, device inventory manager, backend task manager,
backend data manager and database.

– Application Interface: This component interacts with
data collection applications and registers data collection re-
quests. It also interprets the requests and instructs the back-
end task manager to deploy tasks to appropriate workers.

– Device Inventory Manager : It registers mobile devices
which are eligible and willing to participate in a specific data
collection task. It also updates devices’ information in the
device status table in the database.

– Backend Task Manager : It selects appropriate regis-
tered mobile devices from the device status table based on
data collection task specifications. And it distributes collec-
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tion tasks to selected devices and maintains the task status
in the database.

– Backend Data Manager : It receives data from mobile
devices, aggregates the data and sends aggregated data to
different applications. This component is also responsible
for possible data pre-processing before directing the data to
appropriate applications.

– Database: The database contains at least two tables,
the device status table and the task status table. The for-
mer records information for each registered mobile device,
such as types of sensors, energy level, and location infor-
mation. The task status table records the execution status
for each distributed data collection task and it is updated
periodically by the backend task manager.

2.2.2 Frontend Components
The frontend has four components: worker profile, fron-

tend task manager, sensor manager, and frontend data man-
ager.

– Worker Profile: It stores device owners’ preferences for
data collection activities. For example, a worker may decide
to pause data collection if the phone’s battery is under 30%.
The worker profile may also be used for privacy reasons as
explained in Section 4.

– Frontend Task Manager : It receives data collection tasks
from the backend, and initializes data collection on mobile
devices according to the worker profile and the sensing task.
It also tracks status for different data collection tasks on the
same device.

– Sensor Manager : It serves as an interface for the un-
derlying sensors and the data source. It controls physical
sensing activities including sampling frequencies, and pro-
vides abstraction of sensors for different sensing tasks.

– Frontend Data Manager : It receives collected data from
the sensor manager, and transmits data to the backend. It
may pre-process data locally before transmission due to en-
ergy or bandwidth concerns.

Components in the frontend and backend are designed
to satisfy the requirements in Section 2.1. The application
interface addresses the task specification requirement, and
the two task managers as well as the database are responsible
to manage, tasks at different levels. The sensor manager is
in charge of sensing, and the data managers manage data for
the framework. The worker profile module provides privacy
and efficiency for the framework.

3. APPROACHES
In this section, we review existing works in terms of the

four basic requirements given in Section 2.1. Existing ap-
proaches and strategies are discussed for most requirements.

3.1 Task Specification
Data collection needs are described in task specifications.

Due to its simplicity and extensibility, XML is adopted by
some works for clients to write their task specifications.
There are also works that designed special languages to de-
scribe sensing tasks. Task specifications are interpreted by
the application interface.

– XML: MEDUSA [24] provides the MedScript program-
ming language which is an XML-based domain-specific lan-
guage for clients to describe data collection needs. gPS [28]
and USense [1] both use XML language to identify data
needs and basic functionalities for applications.

– Non-XML: PRISM [8] uses an API with two-level pred-
icates to specify where tasks are deployed and when tasks
begin execution. SeeMon [14] provides a context monitoring
query (CMQ) language for applications to express required
context monitoring semantics. MECA [30] provides phe-
nomenon collection specifications for clients to express their
data needs. A phenomenon is defined as the occurrence of
a certain kind of event at a certain location and time.

3.2 Task Management
There are two main issues for task management: task dis-

tribution and task tracking.

3.2.1 Task Distribution
The backend task manager is responsible for distributing

tasks to mobile devices. There are two approaches for task
distribution: pull approach and push approach.

– Pull Approach: The pull approach requires all mobile
devices to independently download tasks from the backend.
For example, in AnonySense [5], server distributes tasks to
mobile nodes when they are ready to download new tasks.
Then mobile devices decide whether to run the task(s) lo-
cally. This approach has the advantage of protecting work-
ers’ privacy since participating devices do not need to reveal
their identities or other contexts such as their locations. But
it brings a high overhead to the backend server due to po-
tentially large download demands.

– Push Approach: This approach requires the backend
server pushes tasks to a selected set of mobile devices. It re-
quires the backend server to track registered mobile devices.
The server can then select qualified devices to push data
collection tasks. This approach is adopted by most frame-
works for task distribution because it avoids the bottleneck
in the backend server, and also deploys tasks timely. How-
ever, the privacy of the workers may be compromised since
the backend server can track them.

3.2.2 Task Tracking
In order to track task execution status, the frontend and

the backend need to cooperate on task monitoring at differ-
ent levels. Therefore, task tracking includes both frontend
and backend tracking.

– Frontend Task Tracking: Tracking in the frontend is
handled by the frontend task manager in our proposed frame-
work. It tracks tasks at a device level and monitors execu-
tion status for assigned tasks. Task execution status, such
as which stage a task is at and how much data has been
collected, is reported to the backend.

– Backend Task Tracking: For tracking in the backend,
the backend task manager monitors all the tasks at a global
level. For each deployed data collection task, the backend
task manager maintains an entry in the task status table
and monitors its progress on the assigned mobile devices.
The status entry is updated when the backend receives task
execution status reports from the frontend. The backend
aggregates status reports from different mobile devices for
each task and reports overall progress to clients. When a
task expires, the backend task manager instructs frontend
task managers to terminate the execution of that task on all
corresponding mobile devices.
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Table 1: Comparison of Frameworks on Basic Requirements

Requirements
Frameworks

SeeMon[14] DEAMON[26] PRISM[8] Medusa[24] USense[1] MECA[30] MOSDEN[13] gPS[28]

Task Specification
XML x x x
Non-XML x x x

Task Distribution
Pull
Push x x

Task Tracking
Frontend Task Tracking x x x
Backend Task Tracking x x x

Sensor Management x x x x x

Sensing Accuracy
Sensor Heterogeneity x x
Device Placement
Energy Constraint x x x

Data Processing
Frontend Data Processing x x x
Backend Data Processing x x x

Data Sharing
Among Tasks x x
Among Mobile Devices x x

Data Transmission
Network Type x x
Sychronicity x x x x
Delay x x

3.3 Sensing
Sensing requirement needs to address two issues: how to

manage physical sensors and how to maintain sensing accu-
racy.

3.3.1 Sensor Management
Most existing frameworks use high-level abstractions to

manage the underlying physical sensors. MOSDEN [13] in-
troduces the concept of Plugin which is an independent ap-
plication that defines how a sensor communicates with the
framework. MOSDEN also provides an abstraction called
virtual sensor for each underlying data source to help sensor
instantiation, update and removal. gPS [28] incorporates
the concept of human-as-a-sensor into the data collection
process. Mobile device owners can submit their observa-
tions, opinions as well as other sensor data. USense [1] pro-
vides a sensor control layer to schedule sensor duty cycle
and sampling frequency. SeeMon [14] provides a component
called sensor controller which configures sensors when query
changes. PRISM [8] regulates access to sensors by using
three types of sensor access control policies: no sensor, lo-
cation only and all sensors. The sensor manager in SeeMon
[14] dynamically controls sensors to avoid unnecessary data
transmissions.

3.3.2 Sensing Accuracy
The collected data may not have the expected accuracy

due to sensor heterogeneity, device placement and energy
constraint.

– Sensor Heterogeneity: Data from the same type of sen-
sors such as microphones are not uniform because of the
heterogeneity of sensors on different mobile devices. Even
sensors of the same model but with different version of op-
erating systems might yield different measurements under
the same condition. There are mediator based solutions and
field wrappers to normalize data; but we believe a calibra-
tion program executed prior to data collection should suffice
for most applications.

– Device Placement: Some sensors, such as accelerometer
and microphone are more susceptible to how the phone is
placed during the sensing process. So appropriate adjust-
ment during data collection might be necessary to compen-
sate the error [17].

– Energy Constraint: Sometimes sensing accuracy may
need to compromise with energy constraints. A typical ex-

ample is the collection of location data. GSM offers coarse
grained location information and is energy efficient, while
GPS provides better location information but lacks power
efficiency. GSM and Wi-Fi information are usually accurate
enough to mine trajectory patterns. A balanced approach
should be adopted to achieve sensing accuracy and energy
efficiency.

3.4 Data Management
Data management involves three issues: data processing,

data sharing and data transmission.

3.4.1 Data Processing
Collected raw data can be processed in the frontend, the

backend or both. Most frameworks offer these three options
for clients.

– Processing in the Frontend: Due to limited computa-
tion resources, processing in the frontend usually involves
simple computations. For example, gPS[28] checks data in-
tegrity and filters out redundant data before uploading to
the backend. MECA[30] tries to improve the semantic level
of information and reduce the data volume by processing
on device. SeeMon[14] uses preprocessors to remove noise
and error from data and also performs data format conver-
sions. MOSDEN[13] uses locally stored processing classes to
process raw data, such as computing the decibel level from
microphone readings.

– Processing in the Backend: Processing in the backend
server can pursue complex computations such as data aggre-
gation, privacy related processing, etc. SeeMon[14] performs
Fast Fourier Transform to derive feature data. MECA[30]
uses the edge layer to aggregate data from different devices
and then sends data to the backend for further aggregation.
gPS[28] performs more advanced processing and analytics
on submitted data using machine learning, text mining and
image processing.

3.4.2 Data Sharing
Data sharing allows different tasks or mobile devices to

share data in pursuit of efficient and more accurate sensing
capability.

– Data Sharing among Tasks: If multiple tasks request
the same data such as GPS data, the framework should al-
low different tasks to share data sensed from the same sen-
sors. Some frameworks enable data sharing among different
tasks. For example, USense[1] reuses raw data and associ-
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ated computations to cater to multiple application demands.
MECA[30] enables sharing of both raw and processed data
across application tasks.

– Data Sharing among Mobile Devices: There are also
frameworks which enable data sharing among mobile de-
vices. For example, DEAMON [26] suggests sharing sensors
on neighboring sensing nodes to achieve energy-efficient sen-
sor monitoring. MOSDEN[13] provides APIs to facilitate
communications among mobile devices to encourage collab-
orative workload sharing and processing.

3.4.3 Data Transmission
Transmitting data from mobile devices to the server re-

quires the selection of appropriate network(s), and a data
collection framework should also handle synchronicity and
delay.

– Network Type: Wi-Fi network, cellular network, and
bluetooth have been used to transmit data. Bluetooth trans-
mission usually serves as a relay between mobile devices. A
majority of data are transmitted via Wi-Fi networks.

– Synchronicity: Data upload can be real-time synchronous
or asynchronous. Asynchronous transmission is usually trig-
gered by certain events, such as Wi-Fi access or at a certain
time during the day [3]. Comparing with real-time upload,
asynchronous upload is more cost-effective. A hybrid model
of synchronous and asynchronous transmissions can be used
as a middle ground solution: when data size is small or
crucial, synchronous upload may occur. Or else, an event
trigger might be used.

– Delay: Due to network availability or cost issues, data
may not be able to be transmitted to the backend as timely
as originally designed. Thus a general framework should
support efficient data transmission concerning network avail-
ability, delay-tolerance, and overhead. Some possible solu-
tions include data fusion which compresses packets based on
their spatial and temporal properties [31] in transmission.
Data repositories can also provide solutions to overhead and
availability issues. One concern related to delay tolerance is
local storage. Data compression might be used to conserve
storage capacity [23].

We evaluate eight existing mobile data collection frame-
works against the four requirements. The result is presented
in Table 1. In this table, when a framework specifically ad-
dresses a certain issue, we mark a cross in the corresponding
cell.

4. ADDITIONAL ISSUES
In addition to the basic requirements described in previ-

ous sections, issues related to privacy and security, energy
management, and incentives warrant our attention to build
a general purpose mobile data collection framework.

4.1 Privacy and Security
In mobile sensing, one big issue is how to protect privacy

and ensure security. There are three existing approaches to
cope with this issue.

– Worker Profile: In this approach, the framework al-
lows each worker to specify a profile [10]. In the profile,
workers can set policies such as what data are allowed to
be collected, when and where to collect, and the conditions
to trigger data capture. For example, USense [1] uses time-
based, location-based and resource-based worker preferences
to constrain underlying sensing. The profile allows workers

to have more control in the data collection process but too
many constraints might curtail functionality.

– Worker Participation: A framework might allow work-
ers to reject erroneous data in an interactive manner [20].
A worker can also pause the collection process when he
does not want to expose private information such as cer-
tain geolocations. This strategy helps protect worker pri-
vacy [28]. However, such worker participation might over-
load the server when many workers constantly pause and
resume their collection processes. It is because the server
has to update task status on a timely manner.

– Sandbox : Sandbox is a well-known security approach for
executing untrusted programs. Both PRISM [8] and Medusa
[24] use virtual machines (VM) and sandboxes to separate
different data collection tasks on mobile devices. This ap-
proach improves system efficiency and security by allowing
arbitrary binaries to run in a virtual machine. However,
the overhead of VM may negatively impact mobile devices’
performance.

4.2 Energy Management
Another hurdle for mobile data collection is battery life on

mobile devices because sensing activities are major sources
of power consumption. There are three approaches we can
use to achieve energy efficiency.

– Efficient Collection: Data reduction, data prediction
[8] and efficient data acquisition on certain sensors [21] have
been proposed to reduce energy consumption. Context shar-
ing has also been applied to achieve energy saving [22] though
it raises privacy concerns. Another way to achieve efficient
data collection is to balance pull and push approaches when
communicating with the backend server [29]. For location
data collection which is required for almost all mobile sens-
ing applications [4], some location estimation methods can
be used to save energy [15].

– Piggyback : This approach achieves energy saving by
collecting data during the time another normal application
runs in the foreground, such as normal app using, making
calls, or uploading data. It is based on the fact that the
energy needed for data collection is lowered when a device
is already awake from the idle sleep state [18]. [18] also pro-
vides an algorithm to adequately predict when smartphone
application opportunities may happen. One concern of pig-
gybacking is whether user experience might be affected due
to resource usage by the sensing activity.

– Software-based Energy Saving : Programmers for mobile
application development must be aware of energy efficiency.
Existing energy efficient design approaches on architecture,
compiler, OS, and hardware can be used in mobile data col-
lection frameworks.

4.3 Incentives
Mobile data collection consumes phone owners’ resources

such as battery and bandwidth, and exposes them to poten-
tial privacy and security threats. Therefore, workers would
be reluctant to report their data unless they gain rewards for
participating in data collection. Many mobile sensing works
focused on developing end applications but failed to design
incentive approaches to motivate workers. Existing research
has evaluated reciprocity as means to encourage participa-
tion. Work on recommenders and P2P [11] have also sug-
gested reciprocity. But the quid-pro-quo approach might
affect phone performance. A pricing model that connects
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Table 2: Comparison of Frameworks on Additional Issues

Additional Issues
Frameworks

SeeMon[14] DEAMON[26] PRISM[8] Medusa[24] USense[1] MECA[30] MOSDEN[13] gPS[28]

Privacy and Security
Worker Profile x x x x
Worker Participation x x
Sandbox x x

Energy Management
Efficient Collection x x x x x x
Piggyback
Software-based

Incentives x x x

incentives to data quality can also be defined and explored
[30, 18]. If ground truth can be verified, human observa-
tion errors in mobile sensing can also be linked to incentives
[27]. We want to direct interested readers to a recent survey
paper on incentives [12].

Similar to the previous section, we evaluate the same eight
existing mobile data collection frameworks against the issues
discussed in this section. The result is shown in Table 2.

5. CONCLUSION
In this paper, we present a survey on how to build a gen-

eral mobile data collection framework. We identify the basic
requirements and present an architecture for such a general
framework. We also summarize existing approaches to ad-
dress the basic requirements. We survey eight state of the
art mobile data collection frameworks and compare them
against basic requirements and additional issues. As can be
seen in Table 1 and Table 2, no single framework covers all
requirements and issues that need to be addressed. There
are many open issues and challenges in mobile data collec-
tion framework research such as how to scale up mobile sens-
ing projects and how to allow multiple sensing applications
to run concurrently under a single app on workers’ phones.
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