
Detecting the Vulnerability of Multi-Party
Authorization Protocols to Name Matching Attacks

Wenjie Lin (Contact Author)∗, Guoxing Chen∗, Ten H. Lai∗, David Lee†
∗Ohio State University, 2015 Neil Ave, Columbus, OH
†HP Labs, 1501 Page Mill Road, Palo Alto, CA

{linw, chenguo, lai}@cse.ohio-state.edu {david.lee10}@hp.com

Abstract—Software as a Service (SaaS) clouds cooperate to
provide services, which often provoke multi-party authorization.
The multi-party authorization suffers the so-called name match-
ing attacks where involved parties misinterpret the other parties
in the authorization, thus leading to undesired or even fatal
consequences (e.g., an adversary can shop for free or can log
into a victim’s Facebook account).

In this paper, we propose a scheme to detect the vulnerability
of multi-party authorization protocols that are susceptible to
name matching attacks. We implement the detecting scheme
and apply it to real world multi-party authorization protocols
including Alipay PeerPay, Amazon FPS Marketplace, and PayPal
Express Checkout. New name matching attacks are found, and
fixes are proposed accordingly.

Keywords: multi-party authorization, name matching attacks,
protocol analysis.

Tracks: Security Applications, Information Assurance

I. INTRODUCTION

There are a large number of Software as a Service (SaaS)
clouds in the market, such as Google Docs (document man-
agement), Dropbox (storage and sharing), HP ePrint (printing),
Salesforce (customer relation management), Cloud9 (revenue
forecast), 1010Data (Big Data analysis), and Alipay (third-
party payment). When these clouds cooperate with one another,
more advanced services can be provided, and they often require
multi-party authorization. For example, a user Alice may
authorize HP ePrint to retrieve and print her bank statements
stored in her Google Docs—this service would involve three-
party authorization. There are services requiring four-party
authorization. For example, Alice may order some products
from Newegg and ask her husband Bob to pay the bill through
Alipay (which is a popular PayPal-like service provider in
Asia). Here, Alice and Bob together authorize Newegg to
withdraw some money from Bob’s Alipay account.

Cloud services requiring five- or more-party authorization
are not unthinkable. Envision a new cloud service called
SyncData that allows multiple users to synchronize their
data stored at various clouds. For example, Alice and Bob
may want SyncData to update Alice’s dataset in 1010Data
according to Bob’s sales data in Saleforce. This requires five-
party authorization. As another example, suppose it takes
several managers’ approvals to allow Cloud9 to retrieve a
company’s sales data in Salesforce, thus triggering an n-party
authorization.

Cisco recently announced plans to build the world’s largest
global Intercloud—a network of clouds—in the next two

years. As data communications and job migrations among
clouds become more efficient and secure, we believe that new
services involving multiple clouds and thus requiring multi-
party authorizations will be emerging.

In this paper, we investigate multi-party authorization pro-
tocols in cloud services, focusing on detecting the vulnerability
to the so-called name matching attacks, which we believe are
main threats to the security of multi-party authorization. Our
study is motivated by the following reasons.

First of all, name matching attacks are new threats that typ-
ically exist in cloud-based authorization but not in traditional
authorization such as RBAC [22], PBAC [20] and ABAC [28].
In cloud applications, a user may use different usernames at
various clouds. It is not trivial (if not impossible) to figure out
whether the username say aaa at one cloud and the username
say xyz at another cloud refer to the same user (especially
when privacy is a concern). Thus, when an initiator issues
an authorization request with n parties’ names in it, it is
important, but nontrivial, for each named party to know who
exactly the other parties are — which is the root cause of the
name matching attacks.

Secondly, name matching attacks lead to undesired or
even fatal consequences to multi-party authorization. In the
aforementioned example of HP ePrint, Alice (with username
xyz at Google) grants the authorization at Google Docs. If an
adversary was able to launch an attack, such that HP ePrint
failed to match Alice’s name—thought it was bbb (Bob’s HP
username) who granted the authorization—HP ePrint would
print Alice’s bank statements on Bob’s printer (Figure 1).
Alice’s personal data would be released. We summarize name
matching attacks against three-party authorization in the liter-
ature in Table I.

Finally, to the best of our knowledge, although name
matching attacks have been vaguely recognized in the literature
as violations of “a series bindings” [24] and “association” [26],
detecting the vulnerability of multi-party authorization pro-
tocols to the name matching attacks has never been singled
out as a problem. The existing research focused on three-
party scenarios and was in case-by-case fashion. For example,
researchers identified attacks [3], [4] against the famous three-
party authorization protocol OAuth [12], [13] and its applica-
tions to Single Sign On [25], [23], [7], [6]. Various attacks were
also identified in PayPal and in Amazon payment services [24].
As far as we know, more-than-three party authorization and its
security have not been studied.

This paper has two contributions. First, we propose a

“xyz authorizes
target.com to
withdraw $500 from
me”.

aaa@gmail.com

google.com

Google Docs

Alice

HP ePrint xy
z

“bbb@gmail.com
authorizes me to withdraw
retrieve bank statements
from google.com”.

go
og

le
.c

om

“I authorizes hp.com
to retrieve my bank
statements from
google.com”.

Fig. 1: An example of name matching attack

TABLE I: Name matching attacks in literature

Pub date Affected protocols Reference
April,
2009 OAuth 1.0 Session fixation

attack [3]

Aug, 2011 OAuth v2-16 Auth code swap
attack [4]

May, 2011 NopCommerce integrating
Amazon Simple Pay [24]

May, 2011 Amazon Payment SDK [24]
May, 2012 Google ID & Smartsheet SSO [25]

Oct, 2012 One third of studied RPs us-
ing OAuth in [23]

Session swapping
attack [23]

scheme to detect the vulnerability of multi-party authorization
protocols to name matching attacks. Our detecting scheme
is inspired by the observation that all current multi-party
authorization protocols are composed of five types of three-
party primitives. Therefore, by checking the security of each
primitive and their composition with Protocol Composition
Logic (PCL) [11], [21], we are able to detect the vulnerability.
Comparing to other formal method approaches (e.g., [14],
[19]), our detecting scheme takes more protocol insights into
consideration, and thus can pinpoint the vulnerability in a
protocol and suggest a remedy immediately.

Moreover, we implement the detecting scheme and apply
it to high-profile three-party and four-party authorization pro-
tocols, including Alipay PeerPay, Amazon FPS Marketplace,
and PayPal Express Checkout. New vulnerabilities to name
matching attacks are found and the remedies are proposed.

The rest of the paper is organized as follows. In Section II,
we introduce the system model and the adversary model. We
propose the detecting scheme in Section III. The scheme is
applied to case study in Section IV.

II. SYSTEM AND ADVERSARY MODELS

Entities and names: There is a universal set E of entities,
which in practice consists of all cloud service providers (e.g.,
Google, Amazon), end users (e.g., Alice, Bob), enterprise
users, traditional service providers (e.g., banks, Visa) and so
on. An entity knows another entity by a single name such
as a user’s username or a cloud’s URL. (Each entity typically
knows only a subset of entities in E .) For simplicity, we assume
that a user may have at most one account/username at a cloud.
(If Alice has multiple accounts/usernames at Google, we will
have to treat the “person" Alice as multiple entities, each
corresponding to one of her Google username.) Denote the

set of all entities’ names as N . The acquaintances between
entities (i.e., who knows who by what name) are modeled as
a function Ent, as described below.

Definition 1: [Function Ent] Ent : E × N → E ∪ {⊥}.
For each entity e ∈ E and name m ∈ N , let Ent(e,m) denote
the entity that is known to e by the name m. If e doesn’t know
anybody by the name m, then Ent(e,m) =⊥.

Example: If Alice’s username at Google is xyz, then
Ent(Google, xyz) = Alice.

Multi-party authorization: In an n-party authorization, an
initiator sends out an authorization request (typically to one
of the entities involved in the request), thereby triggering
n entities to exchange messages and reach an authorization
decision respectively (e.g., the decisions made by HP ePrint,
Google Docs and Alice in the aforementioned example in
Figure 1).

The request specifies names of n entities—authorizers,
authorizees, and enforcers—in the authorization. An authorizer
(e.g., Alice) is an entity who grants the authorization; An
authorizee (e.g., HP ePrint) is an entity who is granted the
authorization; An enforcer (e.g., Google Docs) is an entity
(often a server) who manages resources and enforces the
authorization.

Reliable and secure channels: The channel is reliable without
message loss (e.g., a TCP channel), and is secure against eaves-
droppers and interception (e.g., an SSL channel). However, we
do not assume all messages can be authenticated, because it is
unrealistic to assume all ordinary users (e.g., Alice and Bob)
have a public key known by the rest parties in the authorization.

Bounded message delay and computation time: We assume
that there are bounds on message delay and computation time.
A party aborts the protocol if it does not receive a message or
obtain a computation result in time.

Concurrent self composition: As there are concurrent multi-
party authorizations, an authorization protocol should be se-
cure under concurrent self composition, that is, the protocol
remains secure even when it is executed concurrently multiple
times [17].

The adversary model: We consider the Byzantine adversary
model [15] where an adversary can exhibit arbitrarily malicious
behaviors. Moreover, an adversary can launch web attacks
described in [23]: It can send malicious links via spam or
by posting an Ad on a malicious website. If a victim clicks on
the malicious link, the (browser of the) victim will send HTTP
requests (i.e., GET and POST methods) with the messages
crafted by the adversary.

III. DETECTING THE VULNERABILITIES TO NAME
MATCHING ATTACKS

In this section, we introduce a scheme that can detect
vulnerabilities to name matching attacks in a class of multi-
party authorization protocols, the protocols that are composed
by three-party primitives (described next).

A. Overview of our detecting scheme

To the best of our knowledge, the multi-party authorization
protocols we are aware of—which are provided by Google,

Graph	

coloring	

Protocol	

decomposi3on	

Vulnerability	

iden3fica3on	

A protocol to
be examined

A sequence P
of primitives

A colored
graph MP

A remedy

R, Rm, A

Table of primitive
security (Table II)

Vulnera-
bilities

Fig. 2: A scheme to detect vulnerabilities to name matching
attacks

Amazon, Alipay, Facebook, and other high-profile vendors—
are all composed of three-party primitives (described in Sec-
tion III-B1). We thus focus on detecting vulnerabilities in
this kind of multi-party authorization protocols. The detecting
scheme includes three modules (Figure 2): protocol decompo-
sition, graph coloring, and vulnerability identification.

In the protocol decomposition module, a given n-party
authorization protocol is re-written as a sequence of three-
party primitives. We describe the primitives and their security
in Section III-B1 and Section III-B2. In this step, manual
assistance is needed.

In the graph coloring module, the sequence of primitives
together with other inputs are fed into Algorithm 1, which
thereby outputs a colored graph. If the colored graph has a
red or grey edge, a name matching vulnerability is likely to
exist.

In the vulnerability identification module, one cab identify
the vulnerability by investigating how the graph is colored step
by step in the graph coloring module. This investigation reveals
the root cause of the vulnerability, so that one can construct
a name matching attack accordingly. With each vulnerability,
one can propose a remedy and verify it by repeating the last
two modules. Here manual assistance is needed.

B. Protocol decomposition

All multi-party authorization protocols that we are aware
of can be composed by the following five types of three-party
primitives.

1) Five types of three-party primitives: A primitive
(e, c, d) is a protocol involving three (not necessarily distinct)
entities e, c, d. The input to the protocol is an entity e and
two names mc and md by which e knows entities c and d,
respectively. (Note that c and d are not part of the input; only
their names known by e are.) At the end of the protocol, entity
c outputs a name m′

d by which it knows entity d. That is, c
outputs a name m′

d such that Ent(e,md) = Ent(c,m′
d). (We

could have written the primitive as (e,mc,md), but chose to
write it as (e, c, d) for ease of understanding.)

In the following, e, c, d indicate distinct entities. A ses-
sion ID is used to distinguish between different sessions or
executions of the same primitive.

1) P1 = (e, c, c): Suppose e knows c by a name mc.
The protocol is trivial; just let e send c a message
containing the name mc and session ID sid. After
the primitive (protocol), c outputs the name it calls
itself in session sid:

e→ c : {mc, sid};
c outputs its own name in session sid.

2) P2 = (e, c, e): Suppose c calls e by a name me. The
protocol is straightforward — e sends c a message
containing the name me and session ID sid. After
the primitive, c outputs me in session sid:

e→ c : {me, sid};
c outputs me in session sid.

3) P3 = (e, c, d) where e, c know d by the same name
md. After the primitive, c outputs md in session sid:

e→ c : {md, sid};
c outputs md in session sid.

4) P4 = (e, c, d) where e, d know c by the same name
mc. The protocol consists of two steps. In the first
step, e sends a message to d (who is known to e
by the name md): “Hi md, please ask mc to output
your name.” In the second step, d sends a message
to c: “Hi mc, my name is m′

d.” After the primitive, c
outputs m′

d in session sid (m′
d is the name by which

c knows d):
e→ d : {mc,md, sid};
d→ c : {m′

d, sid};
c outputs m′

d in session sid.
5) P5 = (e, c, d) where e, d know c by the same name

mc, and c, d knows e by the same name me. The
protocol includes four steps. The first step is similar
to the one in P4, except that e generates a secret
sec and sends it to d. In the second step, d sends a
message to c: “Hi mc, my name is m′

d. The secret is
sec. Please confirm it with me.” In the third and last
steps, c sends sec back to e, who verifies if it has
sent the sec in the first step. After the primitive, c
outputs m′

d in session sid (m′
d is the name by which

c knows d):
e→ d : {mc,md, sec, sid};
d→ c : {me,m

′
d, sec, sid};

c→ e : {sec, sid};
e→ c : {correct, sid};
c outputs m′

d in session sid.

2) Security of individual primitives: We examine if each
primitive satisfies the security property that all honest entities
output correct names, that is, if c is honest and outputs a name
m′

d, there must be an entity e who inputs two names mc,md

such that Ent(e,mc) = c and Ent(e,md) = Ent(c,m′
d).

The security of individual primitives is summarized in
Table II. In the table, 0 indicates that a name matching attack
can be found and 1 indicates that the security property holds
(if certain condition is satisfied). Here A is the authentication
attributes. For example, A(c, e) = 1 means that c can authen-
ticate the messages sent by e. The proof is based on Protocol
Composition Logic (PCL) [11], [21]. Due to space limit, please
refer to our full paper [2] for details.

C. Graph coloring

The GRAPH_COLORING algorithm (Algorithm 1) takes
five inputs: (1) a sequence of primitives P; (2) the set of
entities R = {au1, . . . , aui, az1, . . . , azj , ef1, . . . , efk} in an
authorization, where each aui is an authorizer, each azj is an
authorizee, and each efk is an enforcer; (3) the set of entities
Rm (Rm ⊂ R) who may be malicious; (4) the authentication

TABLE II: Security of individual primitives

Primitive All are honest e may be
malicious d may be malicious

P1 = (e, c, c) 1 if A(c, e) = 1 0 –
P2 = (e, c, e) 1 if A(c, e) = 1 0 –
P3 = (e, c, d), where e, c know d by the same name. 1 if A(c, e) = 1 0 1 if A(c, e) = 1
P4 = (e, c, d), where e, d know c by the same name. 1 if A(d, e) = A(c, d) = 1 0 0
P5 = (e, c, d), where e, d know c by the same name,
c, d know e by the same name.

1 if A(d, e) = A(c, d) = 1
and A(e, c) = A(c, e) = 1

0 1 if A(d, e) = A(c, d) = 1
and A(e, c) = A(c, e) = 1

attributes A, where A(c, e) = 1 iff entity c can authenticate the
messages sent by entity e; and (5) Table II (T) that determines
the security of individual primitive.

The GRAPH_COLORING algorithm outputs a three-color
(green, red, gray) graph. The nodes are the entities in the
authorization. A green edge (c, d) where c, d ∈ R indicates
that c can correctly figure out the name of d; A red edge
(c, d) implies that c may incorrectly match the name of d—an
alarm of name matching attacks; A gray edge (c, d) means that
c may not be able to find out the name of d.

Here we briefly illustrate how the algorithm work:
GRAPH_COLORING algorithm checks the sequence of prim-
itives one by one (Line 8–16). If a primitive is simply in
one of the five types (e, c, d), the color of the edge (c, d) is
determined by the function CHECK_GREEN (Line 9–13). If c
continues executing the protocol when the name outputted in
the primitive is the same with the name c has known (denoted
as (e, c, d)), the edge (e, d) is colored according to Line 14–16.

The correctness of the algorithm is justified by PCL too.
Due to space limit, please refer to our full paper [2] for details.

Algorithm 1 GRAPH_COLORING

Input:
1: Set of entities: R ={au1, . . . , aui, az1, . . . , azj , ef1, . . . , efk};
2: Set of entities that may be malicious Rm ⊂ R;
3: Sequence of primitives: P = p1 . . . pt where each pi =

(e, c, d) has e, c, d ∈ R;
4: Authentication attributes A
5: Security of primitive T : P ×A×Rm → {0, 1} (Table II)

Output: Colored graph MP
6: Color all edges gray in the complete graph MP
7: Color all edges directed from the initiator to other nodes

green
8: for i = 1 to t do
9: if pi = (e, c, d) then

10: if CHECK_GREEN(pi, A, Rm) then
11: Color the edge (c, d) green
12: else
13: Color the edge (c, d) red
14: else . pi = (e, c, d) is for verification
15: if (e, d) is red && (c, d) is green && T (pi, A,

Rm) && c ∈ R−Rm then
16: Color the edge (e, d) green
17: return MP ;

1: function CHECK_GREEN((e, c, d), A, Rm)
2: if T ((e, c, d), A, Rm) = 0 then
3: return false
4: if d = e && (e, c) is green then return true
5: else if d 6= e&& (e, d), (e, c) are green then return

true
6: else return false
7: end function

D. Vulnerability identification

A red or grey edge in the colored graph rings an alarm
of name matching attacks. To detect the vulnerability and
construct possible attacks, one should examine the step-by-
step coloring in Algorithm 1.

We summarize common vulnerabilities as follows.

1) Lack of authentication: For example, in the Single
Sign On service provided by Gigya, 13% of studied
websites do not authenticate the messages sent by
Gigya [23]. Due to the lack of authentication, the
edge from Gigya to the authorizer is colored red.
Name matching attacks identified in [23] can thus
be launched.

2) Misused primitives: For example, PayPal uses prim-
itive P4 instead of P5. However, P4 = (e, c, d) is
insecure when entity d is malicious. This causes a
name matching attack (Section IV-C).

3) Missing primitives: For example, in Alipay proto-
col a primitive P5 is missing, which produces two
red edges and thus a name matching attack (Sec-
tion IV-A).

The detecting scheme may have false positives. It is possi-
ble a vulnerability is found, but an adversary cannot exploit it
due to application constrains. In this case, manual investigation
is needed to rule out false alarms.

IV. CASE STUDY

We apply the detecting scheme to real world multi-party
applications, including Alipay PeerPay, Amazon FPS Mar-
ketplace and PayPal Express Checkout. New vulnerabilities
and name matching attacks are found. Remedies are proposed
accordingly.

Due to space limit, we will introduce the case study on
Alipay PeerPay in details and briefly report our findings in
Amazon FPS Marketplace and PayPal Express Checkout.

A. Alipay PeerPay (four parties)

In this section, we apply the detecting scheme to Alipay
PeerPay and find a vulnerability susceptible to a name match-
ing attack.

Alipay is a popular PayPal-like payment service provider in
Asia, which has 300 millions of registered users. The PeerPay
service provided by Alipay enables one to shop online and let
someone else to pay the bill.

For example, with PeerPay service Alice can order a $500
iPad on Yihaodian (an online shopping website owned by
Walmart with URL yihaodian.com) and let her husband
Bob pay for her. In this example, a four-party authorization
is needed: Alice and Bob together authorize Yihaodian to
withdraw $500 from Bob’s Alipay account. Here Alice and
Bob are two authorizers; Yihaodian is the authorizee, and
Alipay is the enforcer.

1) Normal workflow of Alipay PeerPay: In the above
example, Alice first places an order of iPad at yihaodian.com
and selects the payment method as “alipay”. Once Alice clicks
on “checkout”, she is redirected to alipay.com where Alice
logs in her account (say with username aaa@gmail.com).
Upon a successful login, Alipay asks Alice to verify the
request: “paying yihaodian.com $500 for an iPad.” If the
request is correct, Alice specifies her husband Bob to pay the
bill by providing his Alipay username say bbb@gmail.com to
Alipay. Alipay will thereby send an email to bbb@gmail.com

(Bob) as a notification. Once Bob logs in alipay.com, he will
review the request “aaa@gmail.com is requesting you to pay
$500 to yihaodian.com. Do you agree?” If Bob confirms,
Alipay will notify Yihaodian of the successful authorization.

2) The detected name matching attack: We applied the
detecting scheme to the Alipay PeerPay protocol and identified
a new name matching attack, with which an adversary can shop
online for free. Note that this attack is so easy to launch, that
the adversary does not need to have a priori knowledge on
computer science. The attack scenario is as follows.

Step 1: An adversary (say Eve) posts an advertisement:
Eve posts a malicious advertisement on her Weibo page
(a Twitter-like social network), claiming that she can order
an iPad for buyers at yihaodian.com with %5 cash back.
Suppose Eve’s Yihaodian username is eee@gmail.com.

Step 2: Alice places an order: If Alice is attracted by the
advertisement and places an order for an iPad at Eve’s Weibo
page, she will be redirected to alipay.com, where Alice logs
in with her Alipay username say aaa@gmail.com.

Step 3: Alice verifies the request and specifies Bob to
pay the bill: At alipay.com, Alice is asked by Alipay to
verify the request “paying $500 to yihaodian.com for an
iPad”—this is exactly what Alice wants to do. Note that in the
request, the money is paid to Yihaodian instead of Eve. Alice
then specifies Bob to pay the bill by providing Bob’s Alipay
username say bbb@gmail.com.

Step 4: Bob verifies the request and grants the autho-
rization: Alipay sends an email to bbb@gmail.com, indicating
that a request is waiting for approval. Bob then logs in to his
Alipay account where he verifies the request “aaa@gmail.com
is requesting you to pay $500 to yihaodian.com. Do you

agree?” As this is what Bob wants to do and he trusts Alipay,
Bob will grant the authorization.

Step 5: Eve shops for free: Once Bob grants the autho-
rization, Alipay allows Yihaodian to withdraw $500. However
Alipay (as well as Alice and Bob) and Yihaodian do not match
the names of the first authorizer correctly—Alipay thinks
that the first authorizer is aaa@gmail.com (Alice), while
Yihaodian thinks that the first authorizer is eee@gmail.com

(Eve). As a result, Alipay will charge the bill to Bob who is
specified by Alice, while Yihaodian will ship the iPad to Eve.

Remark 1: This attack is different from the tradi-
tional phishing attack, because Eve does not masquerade as
yihaodian.com.

Remark 2: The reader may argue that this is not an
attack, because Alice and Bob can ask for a refund from
Alipay. However, because the refund is charged on Yihaodian,
Yihaodian now becomes the victim—it follows the Alipay
PeerPay protocol exactly, but suffers the financial loss.

Remark 2: The reader may argue that, as Alice places
an order at Eve, she deserves the attack. It is not true in this
scenario, because Alice does not authorize the adversary Eve to
withdraw the money from Alipay. Instead, she authorizes Yi-
haodian to withdraw the money. However, Yihaodian retrieves
the money from her husband Bob, but ships the iPad to Eve.

3) Techniques to launch the attack: Eve can easily take
four steps to launch the name matching attack without a priori
knowledge on computer science. First of all, Eve logs in to
her Yihaodian account using her web browser and places an
order for an iPad. In the second step, Eve turns on her firewall
(e.g., Little Snitch) and blocks any request that is sent to
alipay.com. In the third step, Eve chooses “alipay” as the
payment method at yihaodian.com and clicks on “checkout”.
Because of the firewall, her browser cannot send any request to
alipay.com. In the final step, Eve records the blocked request
(an URL) to alipay (Figure 3a) and posts the URL in her
advertisement page at Weibo. When a victim (Alice) clicks on
“checkout” at Eve’s Weibo page, Alice’s browser follows the
URL and sends the recorded request to alipay.com.

4) Applying the detecting scheme: Our detecting scheme
identifies the above name matching attack as follows.

Protocol decomposition: According Alipay official doc-
ument [1], there are four entities in the authorization: the
first authorizer au1 (e.g., Alice), the second authorizer au2

(e.g., Bob), the authorizee (e.g., Yihaodian), and the enforcer
(Alipay). Here au1 and au2 may be malicious. Note that
A(au1, az) = 0 because the first authorizer does not authen-
ticate the messages sent by the authorizee.

The Alipay PeerPay protocol can thus be decomposed
to the sequence of primitives: p1 = (az, ef, au1), p2 =
(az, ef, ef), p3 = (az, ef, az), p4 = (ef, au1, au1), p5 =
(ef, au1, ef), p6 = (ef, au1, az), p7 = (au1, ef, au2), p8 =
(ef, au2, au1), p9 = (ef, au2, au2), p10 = (ef, au2, ef),
p11 = (ef, au2, az), p12 = (ef, az, ef), p13 = (ef, az, az).

Graph coloring: Figure 3b shows the output of Algo-
rithm 1. The red edges indicate that authorizers and the en-
forcer may match the names of the first authorizer incorrectly.
A vulnerability to name matching attacks may exist.

Vulnerability identification: According to the process of
Algorithm 1, the red edges are caused by A(au1, az) =
0 and malicious au1. The edges do not turn green when
GRAPH_COLORING algorithm terminates. Therefore, a primi-
tive that can verify the authorizers’ names and turn the edges
green is missing.

5) A remedy: To fix the vulnerability, intuitively, Alipay
should verify with Yihaodian that Alice is really the first
authorizer, before Alipay shows the request to her. More
specifically, the protocol should add the type P5 primitive
(ef, az, au1) right after p3, which will turn all red edges to
green. We have reported the attack as well as the remedy to
Alipay.

(a) Eve recording the blocked request to alipay.com

au1 az

au2 ef

(b) The colored graph

Fig. 3: Alipay PeerPay

B. Amazon FPS Marketplace (four parties)

Amazon FPS Marketplace service enables one to setup
his own marketplace (say payloadz.com) where buyers and
sellers can trade products (e.g., files, eBooks, music) and pay
through Amazon. This service requires a four-party authoriza-
tion: a seller (the first authorizer au1) and a buyer (the second
authorizer au2) together authorize Payloadz (authorizee az) to
transfer a certain amount of money from the buyer’s Amazon
account to the seller’s Amazon account. (Here Amazon is the
enforcer ef .) Both authorizers may be malicious.

The detected name matching attack (minor): We found
that an adversary can pretend to be a well-reputed seller at
payloadz.com and sell fair quality products. Suppose Alice
is attracted by the adversary’s advertisement and places an
order for a $50 file from the adversary who claims he is the
well-reputed seller say bbb at payloadz.com. When Alice is
directed to Amazon and logs in there, Amazon will show Alice
a request, saying “pay bbb via payloadz.com” with “total
amount: $50”. However, bbb at amazon.com and the well-
reputed seller bbb at payloadz.com may be two different

entities. As a result, Alice actually pays the money to the
adversary and buys the file with poor quality from him.

This name matching attack exploits the vulnerability that
the edge from the second authorizer (e.g., Alice) to the first
authorizer (e.g., the seller) is grey (Figure 4a), which indicates
that Alice cannot know which seller at payloadz.com she
is paying the money to. This can be easily fixed by the first
authorizer verifying the name of the second authorizer at the
authorizee.

au1 az

au2 ef

(a) Amazon FPS Market-
place

az au

ef

(b) PayPal Express Checkout

Fig. 4: Colored graphs

C. PayPal Express Checkout (three Parties)

The detecting scheme can also be used in three-party
authorization protocols, such as PayPal Express Checkout.

1) The detected name matching attack: We are able to iden-
tify a new name matching attack, which enables an adversary
to shop on target.com for free. The attack is similar to the
one against Alipay PeerPay.

The adversary first creates an advertisement at Facebook or
Twitter, promoting a special offer to get cash back if one orders
Target’s merchandise through him. Suppose Alice is attracted
by the advertisement and places an order for a $50 Target e-
gift card through the adversary. When she chooses to pay by
PayPal, Alice thinks that she is authorizing target.com to
withdraw $50 dollars from her PayPal account.

Once Alice logs in her PayPal account, she will be asked
to verify the request: paying Target (TARGETCORPO) $50
dollars for a “Seasons Greetings Snowglobal Gift Card”—
exactly what Alice wants. Because the page looks exactly
the same as if she places the order by herself, and more
importantly because Alice trusts PayPal to protect the order,
she is very likely to click on “continue”. Afterwards, the
adversary can construct a valid request to target.com and
completes the payment.

As a result, PayPal will charge the bill to Alice while Target
will ship the gift card to the adversary. This name matching
attack exploits a vulnerability in PayPal Express Checkout
protocol, indicated by the red edges in Figure 4b.

2) A remedy: The vulnerability is caused by a misuse of
three-party primitive. To fix it, the P4 type of primitive should
be replaced by the P5 type of primitive. For more details,
please refer to our full paper [2]. The attack and the remedy
have been reported to PayPal.

V. RELATED WORK

Authorization has been studied for decades. The most tra-
ditional ones include discretionary access control (DAC) [16],
mandatory access control (MAC) [8], role based access con-
trol (RBAC) [22], which are widely used in homogeneous
environment. In Internet environment (which is no longer
homogeneous), authorization is closely related to Single-Sign-
On (SSO) authentication. When a user requests services from
a website, he is first authenticated by a third-party identity
provider, where the user receives tickets (Kerberos [18]), cook-
ies (Microsoft .Net Passport [10]) or encoded URLs (Liberty
Alliance Project [5]). The user sends them to the website, who
then provides services accordingly. In these authorizations,
name matching is typically not an issue.

Security of three-party authorization in cloud environment
has drawn great attention of researchers. Researchers found
a session fixation attack [3] and an authorization code swap
attack [4] against OAuth [13], whose security was further
analyzed formally with Communicating Extended Finite State
Machines [14], pi-calculus [7], Alloy [19], and Universal com-
posability Security Framework [9]. Since 2011, researchers
has inspected OAuth’s application on Single Sign On (SSO)
and revealed attacks [25], [23], [7]. Besides OAuth, online
payment, another three party application, was also studied [24].
Learned from the field study of three-party authorization,
researchers built systems to automatically extracting speci-
fications from implementations (AUTHSCAN [6]), to offers
authorizees the security protection to vulnerable web API
integrations (InteGuard [27]), and to uncovering implicit as-
sumptions of SDK provided by enforcers [26]. To the best of
our knowledge, security of four-or-more party authorization
has not been systematically studied yet.

VI. CONCLUSION

In this paper, we proposed a scheme to detect the vulnera-
bility of multi-party authorization protocols to name matching
attacks. By applying the scheme, we found new name match-
ing attacks in high-profile three- and four-party authorization
protocols such as Alipay PeerPay, Amazon FPS Marketplace,
and PayPal Express Checkout.

In our future work, we will investigate name matching
attacks when multiple colluded adversaries are present. We are
also seeking a secure protocol that can solve the multi-party
authorization problem.

REFERENCES

[1] Alipay Peerpay. http://home.alipay.com/bank/paymentPayOther.htm.
[2] Full paper. https://www.dropbox.com/s/hf49zxs3gzknkcy/full.pdf.
[3] OAuth Security Advisory: 2009.1. http://oauth.net/advisories/2009-1/.
[4] [OAUTH-WG] Auth Code Swap Attack. http://www.ietf.org/

mail-archive/web/oauth/current/msg07233.html.
[5] L. Alliance. Liberty alliance project. Web page at http://www.

projectliberty. org, 2002.
[6] G. Bai, J. Lei, et al. AUTHSCAN: Automatic Extraction of Web

Authentication Protocols from Implementations. Proceedings of 20th
Annual Network & Distributed System Security Symposium, 2013.

[7] C. Bansal et al. Discovering Concrete Attacks on Website Authorization
by Formal Analysis. In Computer Security Foundations Symposium
(CSF), pages 247–262. IEEE, 2012.

[8] D. E. Bell and L. J. LaPadula. Secure computer systems: Mathematical
foundations. Technical report, DTIC Document, 1973.

[9] S. Chari, C. Jutla, and A. Roy. Universally Composable Security
Analysis of OAuth v2.0. Technical report, 0. Cryptology ePrint Archive,
Report 2011/526. http://eprint.iacr.org, 2011.

[10] M. Corporations. Microsoft. net passport review guide. Technical report,
Technical report, Available at www. microsoft. com, 2003.

[11] A. Datta et al. Protocol Composition Logic (PCL). Electronic Notes in
Theoretical Computer Science, 172:311–358, 2007.

[12] E. Hammer-Lahav. RFC 5849: The OAuth 1.0 protocol. Internet
Engineering Task Force (IETF), 2010.

[13] D. Hardt. Rfc 6749: The oauth 2.0 authorization framework. Internet
Engineering Task Force (IETF), 2012.

[14] Y. Hsu and D. Lee. Authentication and Authorization Protocol Security
Property Analysis with Trace Inclusion Transformation and Online
Minimization. In IEEE International Conference on Network Protocols
(ICNP), pages 164–173. IEEE, 2010.

[15] L. Lamport et al. The Byzantine Generals Problem. ACM Transactions
on Programming Languages and Systems (TOPLAS), 4(3):382–401,
1982.

[16] B. W. Lampson. Protection. ACM SIGOPS Operating Systems Review,
8(1):18–24, 1974.

[17] Y. Lindell. Lower Bounds for Concurrent Self Composition. In Theory
of Cryptography, pages 203–222. Springer, 2004.

[18] J. Lopez et al. Authentication and authorization infrastructures (AAIs):
a comparative survey. Computers & Security, 23(7):578–590, 2004.

[19] S. Pai, Y. Sharma, S. Kumar, R. Pai, and S. Singh. Formal verification
of oauth 2.0 using alloy framework. In Proc. of Communication Systems
and Network Technologies (CSNT), pages 655–659. IEEE, 2011.

[20] L. Pearlman et al. A Community Authorization Service for Group Col-
laboration. In Proc. of Policies for Distributed Systems and Networks,
pages 50–59. IEEE, 2002.

[21] A. Roy et al. Secrecy Analysis in Protocol Composition Logic.
In Advances in Computer Science-ASIAN 2006. Secure Software and
Related Issues, pages 197–213. Springer, 2007.

[22] C. E. Sandhu, R.S. et al. Role-Based Access Control Models. Computer,
29(2):38–47, 1996.

[23] S.-T. Sun and K. Beznosov. The Devil is in the (Implementation)
Details: an Empirical Analysis of Oauth SSO Systems. In Proceedings
of ACM conference on Computer and Communications Security (CCS),
pages 378–390. ACM, 2012.

[24] R. Wang et al. How to Shop for Free Online—Security Analysis of
Cashier-as-a-Service based Web Stores. In Security and Privacy (SP),
IEEE Symposium on, pages 465–480, 2011.

[25] R. Wang et al. Signing Me onto Your Accounts through Facebook and
Google: a Traffic-Guided Security Study of Commercially Deployed
Single-Sign-on Web Services. In Security and Privacy (SP), IEEE
Symposium on, pages 365–379, 2012.

[26] R. Wang, Y. Zhou, et al. Explicating SDKs: Uncovering Assumptions
Underlying Secure Authentication and Authorization. In Proceedings
of the USENIX Security Symposium. USENIX, 2013.

[27] L. Xing, Y. Chen, et al. InteGuard: Toward Automatic Protection of
Third-Party Web Service Integrations. In Proceedings of 20th Annual
Network & Distributed System Security Symposium, 2013.

[28] E. Yuan and J. Tong. Attributed based Access Control (ABAC) for Web
Services. In Web Services, Proceedings. IEEE International Conference
on. IEEE, 2005.

	SAM9785

