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Abstract

Trusted Execution Environments such as Intel SGX provide
software applications with hardware support for preventing
attacks from privileged software. However, these applications
are still subject to rollback or replay attacks due to their lack
of state continuity protection from the hardware. Therefore,
maintaining state continuity has become a burden of soft-
ware developers, which is not only challenging to implement
but also difficult to validate. In this paper, we make the first
attempt towards formally verifying the property of state conti-
nuity for SGX enclave programs by leveraging the symbolic
verification tool, Tamarin Prover, to model SGX-specific pro-
gram semantics and operations, and verify the property of
state continuity with respect to monotonic counters, global
variables, and sealed data, respectively. We apply this method
to analyze these three types of state continuity issues exhib-
ited in three open-source SGX applications. We show that our
method can successfully identify the flaws that lead to fail-
ures of maintaining state continuity, and formally verify the
corrected implementation with respect to the desired property.
The discovered flaws have been reported to the developers
and some have been addressed.

1 Introduction

The demand for confidential computing has driven the recent
rapid development of trusted execution environments (TEE),
such as Intel Software Guard Extension (SGX) and AMD Se-
cure Encrypted Virtualization (SEV), in mainstream proces-
sors. These hardware-assisted TEEs allow the applications to
compute directly on confidential data without leaking secrets
to powerful adversaries who control the computing infrastruc-
tures (e.g., operating systems). Introduced in 2013 [7, 30, 39]
and officially released in 2015, Intel SGX becomes a lead-
ing TEE product that gains significant attractions from both
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academia and industry in developing various novel systems
(e.g., [8,13,32,50,52]) and applications (e.g., [43,45,51,56]).

However, software built with TEE support is not secure
by default. Building a secure SGX application comes with
many challenges, one of which is the lack of state continu-
ity protection in SGX. State continuity is a well-known re-
search problem in the literature of trusted computing (e.g.,
[6,16,22,38,41,49,50,57]). It states that when a protected
module resumes execution from an interruption (e.g., reboots
or system crashes), it should resume from the same state be-
fore the interruption [41].

Unfortunately, the issue of state continuity becomes even
more complex in the context of Intel SGX. An SGX appli-
cation is divided into untrusted and trusted components; the
trusted components running inside the protected memory re-
gions (dubbed enclaves) form the trusted computing base
(TCB) of the application. Because the trusted components
cannot directly access system services, such as file systems,
network I/O, and memory management, the execution of the
TCB is interleaved with frequent requests to the untrusted
part for such services. The support of enclave multi-threading
further complicates the execution states of the TCB, which
allows concurrent updates of the TCB states.

The SGX hardware cannot ensure state continuity of the
enclave programs for two reasons. First, the execution state
can be distorted by data input from the untrusted component.
Even when such data is encrypted and integrity protected, e.g.,
monotonic counters, sealed storage, and authenticated mes-
sages, a previously used data can be replayed to the enclave
program—bypassing decryption and integrity checks—and
effectively rolling the TCB state back to a previous one. Sec-
ond, the execution state can be affected by global enclave
variables altered by concurrently executed enclave threads.
As thread scheduling can be manipulated by the adversary,
thread-unsafe enclave code is particularly susceptible to data
races [53]. As such, improperly implemented enclave pro-
grams may find itself vulnerable to attacks due to its lack of
state continuity protection.
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Ensuring state continuity in an enclave program is not easy.
To do so, the developer must clearly understand the boundary
between trusted and untrusted components, carefully use the
SGX SDK to implement synchronization locks and the re-
mote/local attestation logic, and properly implement accesses
to monotonic counters, secure clocks, sealed storage, and var-
ious cryptographic primitives. This is unquestionably tedious
and error-prone. Validating the correctness of enclave im-
plementation, nevertheless, in a programtic and automated
manner is a research problem yet to be solved.

In this paper, we make the first step towards formal
verification of state continuity for enclave programs. Specif-
ically, we resort to symbolic verification, which has been
shown with significant success in proving protocol secu-
rity [10]. Symbolic verification tools, such as Tamarin [40]
and ProVerif [15], typically come with built-in support
for standard cryptographic primitives, Dolev-Yao Model
adversary capabilities, and desired properties specified in
first order logic. These tools have been used to analyze TLS
1.3 [14, 21, 26], the Noise framework [29, 36], the secure
messaging protocol (e.g., Signal) [35], 5G authentication key
exchange [12], and so on. However, symbolic verification has
never been applied to verify state continuity for SGX enclave
programs. Modeling state continuity involves interaction
among the CPU hardware, the operating systems, and
the enclave software, which is intuitively more complex
than modeling message passing between network entities.
Therefore, prior to this work, whether symbolic verification
can be applied to this problem remains unclear.

Our key observation is that the operations of enclave
programs can be approximated by the execution logic of
Tamarin and the Dolev-Yao model [27]. Because the memory
of enclaves is encrypted, the untrusted software cannot direct
inspect the internal states of the enclave program; however the
untrusted software may act as a man-in-the-middle adversary,
who is capable of eavesdropping, reordering, blocking,
delaying, replaying, modifying, or even generating messages
between trusted entities (e.g., enclaves, remote users), by
manipulating the instantiation, data inputs, and execution
ordering of enclave threads. Moreover, the property of state
continuity can be modeled as the problem of uniqueness
of objects and events, one-to-one mapping of requests and
responses, and specific ordering of events. As such, first-order
logic commonly used in symbolic verification tools should
be sufficient for reasoning state continuity.

Therefore, we propose to automate formal verification of
state continuity for SGX programs using Tamarin prover [40],
a well-known symbolic verification tool. Specifically, we use
Tamarin to model the execution of SGX programs, including
enclave APIs, isolated memory, monotonic counters, SGX
derived keys, efc., and then verify their state continuity prop-
erties. Tamarin is chosen over other similar tools, such as
ProVerif, for several reasons. First, Tamarin supports the ab-
straction of mutable global states and adopts a more generic

and low-level encoding language [10]—Multiset Rewriting
rules—than ProVerif. This capability allows us to model the
execution of SGX applications in sufficient details. Second,
whereas ProVerif uses approximation to make the prover au-
tomatic and efficient, Tamarin’s prover engine does not make
any approximation over the model developed by its users.
Therefore, the use of Tamarin gives us fine-grained control of
the model and the execution of the prover.

We apply our method on three categories of flaws that
allow violation of state continuity; in these three categories,
the TCB states are stored in monotonic counters, global
variables, and data in the sealed storage, respectively. We
have discovered such problems in many open source SGX
applications and selected one application from each category,
namely, Hyperledger Sawtooth [1], SGXEnabledAccess [19],
and BI-SGX [42]. We developed Tamarin models' for the
core part of each of these three applications.

While expertise of using the Taramin Prover is still re-
quired, templates for modeling individual SGX primitives
and state continuity properties could significantly facilitate
the construction of the Tamarin models. Experiments suggest
that our method can successfully identify the state continuity
vulnerabilities in these applications. We have empirically val-
idated the identified flaws and found that they can indeed be
exploited by the adversary to alter the integrity of the execu-
tion of the vulnerable enclave programs. We also show that
Tamarin can provide proofs of the absence of such vulnerabil-
ities after these flaws have been mitigated.

Contributions. The contributions of this paper are three-fold:

o It makes the first attempt towards using symbolic verifi-
cation tools to verify the property of state continuity for
SGX enclave programs in a semi-automated manner. To
the best of our knowledge, there is no prior work on the
automated detection or verification of logic flaws like state
continuity.

e [t presents new techniques of utilizing the Tamarin Prover
to model SGX primitives and reason about the state con-
tinuity property with first-order logic. Prior to our work,
use cases of Tamarin are limited to verification of cryp-
tography protocols against Dolev-Yao adversaries. This
work for the first time extends the application of Tamarin
to verify program logic.

e It applies the new techniques on the verification of three
open-source SGX applications. Our proposed method can
successfully identify the state continuity flaws and verify
the absence of such flaws in the modified versions. The
discovered flaws have been reported to the developers of
these applications and some have been addressed in later
versions of these applications.

'Our Tamarin code is released at Github: https://github.com/
0SUSecLab/SGX-Enclave-Formal-Verification.
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2 Background

2.1 Intel Software Guard Extension

Intel Software Guard eXtensions (SGX) [30] is microarchi-
tectural extensions introduced in recent Intel processors, aim-
ing at providing shielded execution environment, dubbed en-
claves, for applications. An application for Intel SGX is di-
vided into trusted and untrusted components, with the trusted
components protected by the enclaves. Each enclave could
support multiple threads running concurrently; the thread
metadata is managed in a particular data structure called
thread control structure (TCS).

Enclave identities. When an enclave is created, the hash
value of its initial code and data is calculated by hardware
as the enclave identity (i.e., MRENCLAVE). Additionally,
each enclave will be signed by its developer—Independent
Software Vendor (ISV) as coined by Intel—before release.
The hash value of the public signature verification key is used
as the enclave’s sealing identity (i.e., MRSIGNER).

Remote attestation (RA). Intel provides a remote attestation
mechanism for the remote client to verify that the enclave
code is running on a legitimate Intel CPU with proper mi-
crocode patches, and the enclave identity is the same as ex-
pected by the client. A successful RA will allow the client to
trust the execution environment of the enclave program and
then provision secrets into the enclave.

Sealing. Intel SGX provides a mechanism called sealing to
enable enclaves to securely store sensitive data outside the
protected memory. A private key called sealing key can be
derived within the enclave to encrypt the sensitive data before
storing it outside the enclave memory. The sealing key, like
other SGX-specific secrets, can be configured accessible to
all enclaves with the same MRENCLAVE or with the same
MRSIGNER.

Ecalls and Ocalls. To facilitate the development of SGX ap-
plications, Intel provides an official SGX SDK [4], which pro-
vides standard interfaces (ecalls) for calling into the enclave
code from the untrusted application and interfaces (ocalls)
for the enclave code to call untrusted functions for system
services. The SDK also provides standard cryptographic APIs
and high-level functions for sealing and remote attestation.

Platform service enclave. Intel provides a privileged enclave,
called Platform Service Enclave (PSE), to access Converged
Security and Manageability Engine (CSME), a secure co-
processor on the same machine. PSE provides other enclaves
an interface to access trusted monotonic counters and trusted
clocks that are maintained in the CSME.

2.2 Tamarin Prover

Tamarin [40] is a software tool for symbolic modeling of
cryptographic protocols and verification of desired security

properties. In particular, it models agents of a security
protocol and messages passed among them, a desired security
property that the protocol aims to maintain, and a proactive
or passive adversary. The foundation of the Tamarin prover
is a multiset rewriting rules (MSR) for modeling a protocol,
including a set of equational theories dictating cryptographic
operations, and a first-order logic formula specifying the de-
sired property. Tamarin offers automated or semi-automated
construction of proofs by checking the satisfiability of the
negated formula of the desired security property.

The input to a Tamarin tool comprises a model of a crypto-
graphic protocol, in the form of a set of MSRs, and the desired
property, which is represented in first-order logic. Each agent
of the protocol is modeled by several MSRs, each of which
abstracts one or multiple actions of the agent, e.g., receiving
requests, performing operations cryptographic operations, or
producing responses. Tamarin then outputs reports of whether
the property is satisfied in all possible executions of the
model. If so, a proof is provided; otherwise, Tamarin produces
a counter-example execution of the model (which is visually
presented in a graph). Since proving a property for a given
model is undecidable, Tamarin does not always terminate.

2.2.1 Terms and Functions

In Tamarin, cryptographic messages are modeled as terms,
which are categorized into fresh terms and public terms. The
former are used to model nonces and private keys, and the
latter are used to model publicly known values.

Cryptographic primitives are modeled as functions. A func-
tion symbol f : ¢ X --- X t, <t takes n terms as inputs and
outputs a term representing the return value. For example, a
symmetric encryption scheme can be modeled as two func-
tions: enc(m, k) takes a message m and a key k as inputs and
outputs a ciphertext, and dec(c, k) takes a ciphertext ¢ and a
symmetric key k as inputs and outputs a plaintext.

Properties of functions are modeled as equational theories.
For example, the equational theory dec(enc(m,k),k) = m in-
dicates that decryption of a ciphertext using the same key
as the encryption returns the original plaintext. Tamarin pro-
vides a set of built-in functions and equational theories to
model standard cryptographic operations (e.g., symmetric
and asymmetric encryption, cryptographic hash, digital signa-
ture, bilinear pairing, and multiplication and exponentiation
in Diffie-Hellman key exchange) and a limited arithmetic
operations (e.g., multi-set union, XOR, and concatenation).
User-defined equational theories can be used to provide ad-
ditional operators, as long as the theory falls in the class of
convergent equational theory with finite variance.

Tamarin provides built-in pairing and projection functions
to model tuple terms. Particularly, the function pair(x,y) mod-
els the pair of two terms x and y, and functions fst(p) and
snd(p) models the projections of the first and second argu-
ments with the following equations: fst(pair(x,y)) = x and
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snd(pair(x,y)) =y. A tuple term < 71, ... ,t, > is represented
as pair(ty, pair(..., pair(ty_1,t;)...).

2.2.2 Facts

The security protocol to be verified is depicted as a sequence
of interactions between agents. The state of an agent is rep-
resented as a set of facts. Each fact models the information
the agent holds, e.g., a private key. A fact is of the form of
F(t1,t2,- -+ ,1,), where F is the name of the fact, and ¢, refers
to a variable or a constant of the protocol. Note that from the
fact, the adversary could not extract the variables #; within.
Hence, #; can be private data. There are two types of facts:
linear facts and persistent facts. Linear facts can be consumed
only once by the agent during state transition (represented as
MSR rules, which will be explained later), and thus they do
not appear in all states of the transition system; in contrast,
persistent facts persist during transitions. There are four spe-
cial built-in facts: Fr, In, Out, and K. Fr is used to generate
fresh random variable; In and out are used to receive and send
data over public channel, respectively; K is used to directly
add data to the adversary’s knowledge base.

2.2.3 Multiset Rewriting Rules

The actions of an agent are modeled as multi-set rewriting
rules, which dictate state transitions of the agent. Every rule
consists of three components: the left-hand side component
(ak.a., premise), the middle component (a.k.a., action), and
the right-hand side component (a.k.a., conclusion). Each of
these components consists of a set of facts. Roughly, the
premise serves as the input of the rule, the conclusion serves
as the output, and the action are marked by action labels to
log rule execution (a.k.a., instantiation). Each action label is
tagged with variables that allow Tamarin to reason about the
execution of the rule, in terms of relationship between the
variables. In addition, constraints can be specified over the
action labels to restrict the execution of the rule. An example
of a Tamarin rewrite rule is shown as follows:

[F1(¢1),F2(t2)] — [Eq(t1,12),Act1(t2)] — [Out(r2)]

where F1() and F2() are linear facts, Eq() is a constraint,
Act1() is the label of the action, and 71, 72, and ¢3 are symbols.
This rule specifies that if the agent has knowledge of the two
facts F1 and F2 and the two related variables 71 and ¢2 are
equal, the agent will send 72 to public channels.

2.2.4 Restrictions on State Transitions

A user of the Tamarin prover can explicitly exclude invalid
execution traces in three ways: 1) restriction axioms, which
are expressed in first-order logic. During the verification pro-
cess, Tamarin considers only the model traces that satisfy the
axiom; 2) type restriction prefix ~. If a variable is prefixed

with the ~ symbol, the rule cannot execute repeatedly with
the same value of the variable; 3) implicit pattern matching,
which dictates that two variables of a rule with the same name
should be instantiated with the same value.

2.2.5 Properties and Proofs

Tamarin’s property is expressed as first-order propositional
logic over the action labels. With the help of timepoint vari-
ables, the relative order of action labels can be encoded as
well. To prove or disprove a property, Tamarin maintains a
system state as it explores valid traces of the model. A trace
is maintained using a graph data structure with rules as nodes
and fact dependencies (fact production and consumption) as
edges. The system state consists of session variables, mes-
sages in the network, and the current knowledge base of the
adversary. For the target property, Tamarin’s goal is to either
find a trace that contradicts the property or show that all traces
satisfy the property.

Tamarin’s proof algorithm begins with an empty system
state. It first derives the negation of the target property, and
assumes its premise, i.e., the part to the left of the implication
sign =, to be true. Then it instantiates all MSRs that can
be applied given this assumption. Starting from these rules,
Tamarin tries to build an execution trace of the model using
a backward search algorithm [48]. In this process, Tamarin
derives a set of constraints from the dependencies among facts,
the ordering of action labels, the adversary’s knowledge base,
the variable relationship as specified in the target property,
and other components of the model, such as type restrictions,
pattern matching, helper lemma, and so on.

Based upon various heuristics implemented in Tamarin,
one of these constraints is picked from the system state and
resolved by Tamarin’s constraint-solver. The resolution step
produces further constraints or eliminates some of the existing
constraints. A constraint can be satisfied from multiple source
rules, thus building up multiple proof sub-case branches, each
representing a potentially valid trace of the model. Users can
additionally influence the proof process by adding Helper
lemmas, i.e., lemmas with the reuse annotations, in the model.
These lemmas are added to the system constraints in the proof
process. Each helper lemma needs to be proven by Tamarin
first before being used as a constraint.

2.2.6 Adversary Model

Tamarin follows the Dolev-Yao Model [27] to define the
capabilities of an adversary, which includes eavesdropping,
creating, modifying (including combining or splitting), and
replaying messages in a public channel. Additionally, the
adversary is armed with message deduction and construction
rules, which allows her to apply cryptographic rules or model-
specific knowledge to advance her current knowledge base.
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2.2.7 Common Assumptions in Tamarin

As a symbolic verification tool, each Tamarin model inherits
the following assumptions.

e The standard cryptographic primitives are perfect, i.e., the
only way to subvert decryption or forge signatures is to
obtain the corresponding secret key. Hash operations are
purely one-way operation and collision resistant.

e Each symbol or term is atomic that cannot be broken into
multiple terms.

e Fresh variables (generated using fact Fr (.)) are pure ran-
dom variables and each instantiation is guaranteed to pro-
duce a unique value.

e Multiple operations within one rule execute as one unit.
Tamarin does not consider interleaving of such operations
in the proof process.

e Each declared variable in a rule is local, i.e., variable used
in two different rules with the same name are different.

e Tamarin can argue about relative ordering of a rule execu-
tion, but it cannot measure the elapsed time between two
executions of rules.

3 Overview

3.1 Problem Statement

In this paper, we aim to address the problem of state continuity
in the context of Intel SGX enclave programs. The concept
of state continuity was proposed in the context of protected
modules [18,28]—code running in isolated environments with
limited APIs to the outside—isolated by a combination of
hardware and software components. It states that the protected
module must resume from the same execution state after TCB
interrupts due to reboot or crash [41].

However, the TCB of SGX enclaves is more complex than
that of protected modules. As a user-space TEE, SGX main-
tains its software TCB in the enclave memory, monotonic
counters, and sealed storage. This TCB can be updated by
any code inside the same enclave, whose execution states
can be initiated, interrupted, suspended, and terminated by
privileged software at any time and in an arbitrary order. As
the execution of the TCB depends on the input data from
the untrusted software (in the form of ecall parameters and
ocall return values), the execution state can be easily manipu-
lated. Moreover, even when such input data is encrypted and
integrity protected, e.g., monotonic counters, sealed storage,
and authenticated messages, a previously used data can be
replayed to the enclave program—bypassing decryption and
integrity checks—and effectively rolling the TCB state back
to a previous one. Nevertheless, the support of multi-threading
in the software TCB makes the protection of state continuity
even more challenging, as the execution integrity of the TCB
can be affected by the interleaved accesses to global variables.

As such, we consider a more general definition of szate
continuity in this work: Specifically, we define states of en-
clave programs as data stored in the enclave memory (e.g.,
global variables) and non-volatile memory (e.g., monotonic
counters) and persistent storage (e.g., sealed data); and state
continuity is a property of the enclave program, which states
that the enclave program always executes on the expected
state, even when the execution can be restarted, suspended,
and interrupted arbitrarily by the privileged software, or in-
terleaved with another concurrent enclave thread sharing the
same set of global variables. Clearly, the traditional definition
of state continuity is subsumed by ours.

3.2 Attacker Model

Following SGX’s threat model, we assume that the OS and
other privileged software is controlled by the adversary. In
particular, the adversary can create new processes and threads,
instantiate enclaves from an enclave binary, trigger ecalls to
an enclave with arbitrary arguments and in arbitrary order,
pause the execution of an enclave at a specific instruction, hi-
jack ocalls and return arbitrary values to ocalls. This includes
triggering concurrent ecalls with multiple threads as long as
multi-threading is supported by the enclave binary. However,
other SGX attacks such as side-channel attacks (e.g., [55]),
denial-of-service attacks (e.g., [34]), and speculative execu-
tion attacks (e.g., [17]) are not considered.

3.3 Overview

In this paper, we aim to tackle the verification of state con-
tinuity using symbolic verification tools, which have been
previously used to verify security of cryptographic protocols
but never applied to reason about system security. However,
doing so encounters two major challenges:

First, one must convert semantics of software programs,
such as branches, global and local variables, synchroniza-
tion locks, as well as a variety of SGX primitives such as
monotonic counters, sealed storage, derived keys, relationship
between developers and enclave code, and adversary capa-
bilities into Tamarin’s MSRs. As the first attempt to achieve
these goals, this work proposes new ideas of building models
using Tamarin MSRs for each of these primitives.

Second, one must encode the desired state continuity
properties into first-order logic that can be expressed by
Tamarin lemmas. This work explores the modeling of state
continuity properties using (1) one-to-one mapping between
requests and responses, and (2) uniqueness of variables,
messages and sessions.

In this paper, we use three case studies to illustrate the use
of this method in the formal verification of state continuity
properties for SGX enclave programs. In these three cases,
the states of the enclave programs are maintained in the mono-
tonic counters, global variables, and seal data, respectively.

USENIX Association

30th USENIX Security Symposium 577



The root cause of the problems varies. For instance, the TCB
state may be different at the time-of-check from that at the
time-of-use; in other cases, the TCB state may be replaced
with a stale one due to improper rollback attacks. We will
showcase how each of these state continuity issues can be
modeled and verified.

4 Tamarin Models for SGX Primitives

Designing symbolic model for the SGX primitives require
unconventional approach, as the execution model of Tamarin
MSRs differs significantly from enclave code. In this section,
we discuss the techniques and principles of building Tamarin
models of each of the considered SGX primitives.

4.1 Structure of SGX Applications

An SGX application consists of a host program (untrusted)
and an enclave binary (trusted). Every SGX application is
developed by an Independent Software Vendor (ISV), who
signs its enclave code and then deploys the entire SGX
application to an SGX-enabled machine. One such a machine
may run multiple SGX applications from different ISVs. At
runtime, each SGX application is instantiated into a process;
the process that executes the enclave code is called an enclave
process.

Before modeling the operations of SGX applications, we
first systematically model these entities and their relationships.
For clarity, we use the terms ISV, platform, enclave-binary,
and enclave-process, to denote an ISV, an SGX-enabled ma-
chine, the ISV-signed enclave code, an instantiated process
from the SGX application.

The relationship among entities may be modeled in a lay-
ered network structure, which we call an association network.
A node in an association network represents an entity (i.e., a
platform, an ISV, an enclave-binary, or an enclave-process).
Each entity is modeled by one specific fresh term called iden-
tity, which is generated using an Fr fact. One example of
forming entity association is shown in Figure 1. The top layer
of the networks are the ISV entities, the second layer is the
enclave-binary entities, and the third is the enclave-process
entities. We denote the entities of same type as one role.
Therefore, the identities of these entities are generated with
fresh role terms; isv, e, and p are role terms. As a result, each
role term instantiates into an distinct entity. The structure of
the network may vary depending on the program to be mod-
eled. When it is not necessary to include certain entities of
a network, omitting them from the model may be beneficial:
(1) it makes the proof of the model more efficient, and (2) the
resulting model becomes more general.

An association network can be modeled as a sequence of
rules, fact properties (§2.2.2), and restrictions on state tran-
sitions (§2.2.4). Besides generating the identities, the rules
collect a set of role terms, called association, to maintain

ISV -
Level 1 Fr(isv) 1 2

12
assoc

Enclave Binary Fr(e) » e, e,

Level 2
23
assoc

Fr(p) Py P, et Py Pea o

[
%
<
-
)
<

Enclave Process
Level 3

MSR Rules Association Network

Figure 1: An example of a multi-layer association network.
The network on the right suggest that one platform runs mul-
tiple ISV-deployed programs; each ISV may have multiple
enclave-binaries; one enclave-binary is instantiated into mul-
tiple enclave processes.

the association information about the entities. Association
facts, in the form of Fjsec(assoc'), propagates the association
information from rule at layer i to the rule at layer j. Also
note that there can be multiple role terms at any layer. Each
rule at the top layer has an association containing its role
term. With the association fact Fys,c(assoc’) passed from a
parent rule i, the rule at layer j produces its association set
assoc! = assoc! URTJ, where RT/ is the set of role terms at
layer j, and pass it to the rule at the next layer k using the
association fact Fajskmc (assoc’).

As persistent facts, association facts can instantiate un-
bounded number of instances of role terms at the next layer.
As shown in Figure 1, the top rule can be instantiated un-
bounded number of times producing unbounded instances of
ISVs. For each of the ISV instances, the association fact can
be passed down to the second rule to generate unbounded
number of enclave-binary instances. As a result, the second
rule observes a collection of enclave-binary instances under
each ISV instance forming an unbounded networks of entity
association. A similar procedure from second rule to the third
rule manifests into unbounded 3-layer networks.

The association network structure is crucial to the model-
ing of enclave thread, scope of variables, and owner-policies,
which will be detailed soon.

4.2 Enclave Threads

An enclave-process can be configured to support a single
enclave-thread or multiple concurrent enclave-threads. We in-
troduce a specific fact, ecall fact, in the form of F,.,(assocP)
where assoc? is the association set of the enclave-process
layer rule that initiates this thread. An ecall fact can be ei-
ther linear (for single threaded execution) or persistent (for
multiple threaded execution).

Each enclave-thread is modeled as another sequence of
rules. The first rule of the sequence takes in an ecall fact to
initiate the enclave-thread execution. Distinct facts, named as
thread facts, of linear type are designated between each pair
of consecutive thread rules. A thread fact from thread rule i
to thread rule j is in the form of F,; . (assoc? U{t},state)
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1. Ecall(pk_ISV, platform,
mrenclave, p_id)

seal_key = h(<platform, mrenclave,
‘seal’>)
2. Fr(-session)
3. In(<data, data_signed,
senc{mcid, sk_user,
pk_user}seal _key>) [
A L4. Verify Sign
5. Inc_MC_req(<platform, pk_ISV>, mcid,
~session)
6. Thread_AB(pk_ISV, platform, mrenclave, L
p_id, sk_user, pk_user, mcid, data)

.'1 Qif

. Inc_MC_req(owner, mcid, session)
. ICSMECowner, mcid, ptr, valMC )
. Fr(-ptr_new)

(. Free(..., ptr)
 ICSMECowner, mcid, -ptr_new, [

valMC + ‘1°)
. MC_ret(owner, mcid, valMC + ‘1°,
ession)

oo u|l wee

1. Thread_AB(pk_ISV, platform, mrenclave, .
p_id, sk_user, pk_user, mcid, data) |
2. MC_ret(<platform, pk_ISV>, mcid, valMC_rcvd,
~session) (
L

3. GenCert(platform, data) }
4. Ecall(pk_ISV, platform, mrenclave, p_id)

ecall E1

1
2.
3.

1. lEcall(p_id)

2. Fr(-t_id)
3. IGlobalVar(p_id, ptrG, valG)
P 4. In(<senc{local_a, local b}k, tag>) (5. Verify tag

Read(..., ptrG) ]

7. Thread_PQ(p_id, ~t_id, local_a, local_b) LG»

A N -

Thread_PQ(p_id,
1GlobalVar(p_id,
Fr(~ptrL) (4

~t_id, local_a, local_b)
ptrG, valG)
Lock(~ptrL, p_id) ]

7

5
_ Thread_QR(p_id, ~t_id, local_a, local b, -ptrL) \g

. Less(valG, local_a)
Read(..., ptrG)

1. !GlobalVar(p_id, ptrG, valG) l
2. Fr(~ptrG_new)
3. Thread_QR(p_id, ~t_id, local_a, local_b,

R perl) (4. Unlock(-ptrL, piid)]
6. IGlobalVar(p_id, -ptrG_new, local_a) 5. Free(..., ptrG)
7. Thread_RS(p_id, ~t_id, local_a, local_b)
l ‘,’
1. Thread_PQ(p_id, ~t_id, local_a,
local_b)
2. 1GlobalVar(p_id, ptrG, valG) (3. Geq(valG, local_a)
Q_else L4' Read(..., ptrG) J

ecall E2

Figure 2: Example Tamarin code of two ecall E1 and E2. The dark and dashed arrow denote thread facts; the latter is used for
branched rules. The dotted arrow represent communication between rules A and B of E1 to a monotonic counter rule M.

where ¢ is the enclave-thread role term created using Fr fact
at the very first enclave-thread rule, and state records the state
of the enclave-thread during the thread execution. We omit
the enclave-thread role term for single threaded enclave for
model efficiency and keep only assocP as the association set.

As linear facts, thread facts enforce a single instance of
each thread rule forming a sequence, whose order is defined
by the order of the thread facts that are passed from one rule
to another. Each thread fact between a consecutive pair of
thread rules is assigned a unique name to enforce a sequential
fact dependency (§2.2.5), resulting in a sequential execution
of thread rules.

We use sample enclave ecalls E1 and E2, as shown in
Figure 2, throughout this section to illustrate many primitives.
Particularly, E1 is modeled as a 3-layer association network,
with the top layer representing an ISV; the second layer
representing user, enclave-binary and the platform; and the
third layer representing the enclave-process. Similarly, E2 is
modeled as another only one layer association network with
role term p_id for enclave-process.

The sequences of rules A—B and P—Q_if—R/P—Q_else
model ecall E1 (single-threaded) and E2 (multiple-threaded),
respectively. The rules 0_1f/Q_else are used for branching
(§4.8). As the very first rule of both threads, the ecall
fact ECall at Al and at P1, provides necessary association
information and thread data to start the thread. Further, the
thread fact Thread_AB (at A6, B1) in ecall E1, and the thread
facts Thread_PQ (at P7, Q_1if1), Thread_QR (at Q_if7, R3,
Q_elsel), and Thread_RS (at R7), in ecall E2, carry the
association information and thread data throughout the thread
rules.

For an enclave-thread configured to run as a single-thread,
it should also be allowed to start again once the single thread
finishes its execution. To restart the thread, the ecall fact will
be instantiated again in the end rule of the sequence. For
example, in Figure 2, the ecall fact at A1 in ecall E1 is pro-
duced again in the end rule B to allow unbounded sequential
threaded runs. On the other hand, multi-threading is supported
by default when the ecall fact is persistent.

4.3 Scope of Variables

In SGX processes, roughly, each variable has one of the two
types of scopes: local (exclusive to one thread) or global
(shared between enclave threads). In this section we describe
how we utilize the association network and enclave-thread
construction to model the scope of variables.

One way to model a local variable is to keep it in the term
state of the thread facts. It is local because a linear thread fact
can be instantiated only once and can be consumed only in
the following thread rule instance. For example, thread facts
Thread_PQ, Thread_QR and Thread_RS in the example ecall
E2 carry local_a and local_b as the local thread data.

A more generic way to model local and global vari-
ables is induced by pattern matching (§2.2.4) over associ-
ation set of thread facts. Specifically, we model local and
global variables in the forms of Fj,eq (assoc? U{t},var;) and
Fyiopai (assoc? ,vary), respectively. Here assoc? is the associa-
tion set of an enclave-process while var; and var,, are the local
and the global variables for an enclave-thread with role term z.

For illustration, consider two facts Fj (assoc? U {t;},var;,)
produced at a thread rule with a thread instance ¢;, and
F>(associ varp,) produced at the enclave-process layer rule
with enclave-process instance p;. If all the facts received at the
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thread rule are modeled to pattern match with the variables
of the thread facts, the fact F; can only be consumed in the
thread instances ¢; but not in any other thread with instances,
tj, due to the violation of pattern match constraint, i.e., the
inequality of thread identity instances #; # ¢;. Thus, the facts
Fi and F> maintain local and global data, respectively.

When using global facts of linear type to model global vari-
able, a rule modeling a read or write operation on the global
variable requires the same global fact to be in both its premise
and its conclusion. If it is not produced in the conclusion, the
global fact will be consumed and removed from the system
state, resulting in the loss of the global variable.

However, having a global fact in both the premise and
conclusion is quite inefficient as it creates a cyclic fact de-
pendency leading to increased verification time. A more ef-
ficient way of modeling global variables is through point-
ers. Pointer version of global facts is in the form of
Fyiopai (assoc? , ptr,vary). A pointer version of the global vari-
able partially avoids the dependency by requiring the global
fact to appear only in the premise for a read operation. Partic-
ularly, pointer version global fact is modeled as a persistent
fact is associated with a unique random value acting as a
pointer ptr to each declared or updated value of the variable.
Note that the persistent facts of the global variable with old
values persist in the system state and can be read even after
a persistent fact of the global variable with a new value is
produced later. To handle this, the following two restriction
axioms, | and 2, are introduced to preserve the consistent
read-write behavior of the global variable.

Restriction 1:

All Read(owner, ptr, ...)@tl & Free(owner, ptr, ...)0@t2
==> #tl < #t2

Restriction 2:
All Free (owner, ptr, ...)@tl & Free(owner, ptr, ...)0@t2

==> #tl = #t2

The owner variable in Read and Free action-labels is
introduced for access control, i.e., which entities can access
the global variable. The owner variable is declared with a
tuple of identities as described in §4.5 and §4.6. Each ptr
variable instance points to one update of the global variable.
The restriction axiom | prohibits reading (action-label Read)
of old values after an update (action-label Free) while the
restriction axiom 2 ensures consistent updates of the same
global value. In summary, the restriction axioms enforce that
after the global variable fact is updated with a new pointer
and value, the facts with old pointers and values can neither
be read nor be updated.

4.4 SGX Keys Derivations

An enclave can use the EGETKEY instruction to derive secret
keys from the hardware, including sealing key for encrypting
sealed data, report keys for local attestation, and provisioning

key for remote attestation. ISVs may choose to enable key
sharing between enclave threads with the same MRSIGNER (an
ISV) or the same MRENCLAVE (enclave-binary).

To model the accessibility of the derived keys, the related
association set is used during the key derivation. Since the
association set is accessible only to the associated entities
(fact properties §2.2.2), it can also be used as secrets for
deriving secret keys. Hence, entities that are allowed to have
shared keys will have the same association set for deriving
the same keys.

Derived keys shared between enclave threads with the same
MRSIGNER on a platform can be modeled using the identities
from the association set, e.g., { plat form,isv}. Consider three
enclave thread instances, 71, 7, f3, under the same MRSIGNER,
i.e., the same ISV instance isv; and the same platform instance,
plat form;. The descendant threads will inherit the same asso-
ciation set and thus can derive the same keys. Within these en-
claves, the derivative values h(< plat form;, isv;, 'report’ >)
and h(< plat form;, isv;, 'seal’ >) can be treated as shared re-
port key and sealing key, respectively, among enclave threads
1, p, t3. Central to the confidentiality of the derived key is
to keep at least one of the identities (plat form in this case)
secret in the derivation throughout the model.

The built-in hash operation 4(.) is pure collision and pre-
image resistant. These properties ensure that the derive keys
are unique and cannot be interchanged across derived uses.
The variable scope principle described in §4.3 ensures that
the seal key with isv; cannot be accessed by other enclaves
with a different isv;.

4.5 Monotonic Counters

Intel provides monotonic counters (MC) to enclaves (through
PSE) to prevent rollback attacks. Once created, the values of
the MCs will only get increased monotonically. An MC can
be created, read, and incremented. Therefore, we model MC
by creating one rule for each operation. The enclave-thread
and MC communicate using a linear fact to establish a private
channel. To ensure one-to-one mapping of the request and
response MC counter we include a fresh variable session in
the communication fact.

The MC memory is abstracted with a dedicated fact in the
form of |Fesyg (owner, mcid, ptr, counter_val) where owner
represents the owner policy defined for MC, mcid is the
unique identity of the counter, the pointer pzr and the variable
counter_val hold the reference and value of the counter, re-
spectively. This fact is used only in the MC rules. In the MC
creation request, enclave-thread use identities from associa-
tion set to initiate !Frsyp with desired owner policy. Across
the three MC rules, the same owner binding also ensures that
only one copy of CSME memory fact, | Fesyg, is used to hold
consistent values of MC. The MC create rule returns a unique
fresh mcid for enclave thread to keep and use later for read
and increment requests.
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We utilize the operator ‘+’ (multiset union) over symbols
from Tamarin’s built-in multiset package to model addition
operation over counters. The operator ‘+’ along with restric-
tion axiom logic, allows comparison (greater, less, equal) of
any two symbols. The increment operations on counters can
be modeled by rules that consumes a !Fesyg with a counter
value x in its premise and produces another counter fact with
value x+°1” in its conclusion. The restriction action-labels
Read and Free, as described in §4.3, are used to enforce
counter to increase monotonically and maintain a consistent
counter value for read and increment operation.

For example, the rule M of ecall £1 (Figure 2) acts as Incre-
ment MC rule. The fact CSME (owner, mcid, ptr, valMC)
(at M2, M5) models the CSME memory. The owner-policy
term, owner, received in the private channel fact Inc_MC_req

(at M2) as <platform, pk_ISV> (at A5) binds the CSME
memory with the same signing key policy—one MC for all
enclave-threads with the same signing identity (pk_ISV) for
a given platform (plat form).

4.6 Sealed Storage

With a sealing key, an enclave can store and retrieve the en-
crypted sealed data to and from untrusted storage via public
channel modeled by Out (.) and In(.) facts, respectively.
This allows the adversary to perform potential rollback attacks
if applicable. In ecall E1 of Figure 2, the received sealed data
is encrypted with the sealing key derived from the platform se-
cret and enclave-binary identities; this means the MREENCLAVE
sealing owner policy is used. To use MRSIGNER sealing policy,
the secret key can be derived with platform and ISV identities
as described in §4.4.

4.7 Locks

Following Kremer and Kiinnemann [37], we model locks
using restriction axioms. It introduces two action-labels,
Lock (pointer, association) and Unlock (pointer,
association) to the rules acquiring and releasing locks.
The first variable in the action-label is a random pointer vari-
able which establishes a unique pairing of the lock and unlock
action-labels. The pointer is passed on with thread facts all
the way through ecall sequences of rules from lock-acquire
to lock-release actions. All instructions covered in these rules
are locked per owner instance. The second variable associates
the lock with entities that use the lock (e.g., a single enclave-
process layer lock among multiple threads).

The restriction axiom shown below utilizes time points,
random pointer variables, and entity identities to enforce the
correct lock behaviors. For the case when #t1 < #2, the vari-
able ptr_1, ptr_2 represent pointers and owner represent the
owner entity identity. The constraint at line 3 prohibits over-
lapping of two different lock-unlock pairs. The constraint at
line 4 prohibits creating two lock-unlock pairs with the same

SGX Threat model Realized by

Thread and process instantiation Using a thread policy based on the
ecall facts (F,¢y) in the first en-
clave thread rule and binding ecall
sequences of rules using thread

facts (Fpreaa) (84.2)

Permute or reorder ecalls Modeling the first enclave thread
rule open to executability without
order dependencies of timepoints

and facts

Pause enclave execution at instruc- | Modeling instructions in individ-
ual rules and utilizing atomic rule

executability (§2.2.7)

tion level

Read access to ecall returns; Read- | Arguments and returns pass
/Modify access to ecall or ocall ar-

guments and returns

through public channel

Replay, modify of sealing, ecall or | Public channel use in combination

arguments and returns Tamarin’s built-in Dolev Yao ad-

versary capabilities

Table 1: SGX threat model construction

pointer. These two constraints effectively establish a unique
pair instance lock@t1 and unlock@t3 with pointer instance .
Constraints at line 5-6 enforce any other lock-unlock pair, rep-
resented by pointer variable ptr_2, must occur either before
or after the lock-unlock pair established at line 3-4. Line 7
covers the other possible order of two arbitrary lock instances
in the premise. Particularly, the lock behavior enforced at lines
2-6 for #t1 < #¢2 also applies to the order #2 < #¢1. Finally,
line 8 completes the lock constraints by freely allowing a
single lock instance to be applied anywhere in the model.

1. All Lock(ptr_1, owner)@tl & Lock(ptr_2, owner)@t2
==>
2 ( #tl<#t2
3. & (Ex Unlock(ptr_1, owner)(@t3 &#tl<#t3 & #t3<#t2
4. & (All Unlock (ptr_1, owner)@t ==> #t=#t3)
5 & (All Lock(ptr_2, owner)@t ==>
#t<#tl | #t=#tl | #t3<#t)
6. & (All Unlock (ptr_2, owner)@t ==>
#L<#tl | #t3<#t | #t3=#t)
)
)
T. | #t2<#tl
8. | #tl=#t2

In ecall E2, the restriction axiom action-labels Lock (~
ptrL, p_id) and Unlock (~ptrL, p_id) enforce a per
process lock (with p_id representing the enclave-process
identity), which locks all the operations of 0_1if and R rules.

4.8 Common Programming Primitives

Some common programming data structure—an append only
indexable-database and control structures—Iloops and branch-
ing are expressible in MSR encoding.
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Indexable-database. Consider a rule as shown below
where the database and the counter facts are initialized as
\DB(owner, 0/, nil), \Counter(owner, ptr, 1) in a separate
rule with ptr as a fresh term; owner to encode owner pol-
icy the database fact.

[In(data), Fr(ptraew), \Counter(owner, ptr,i),

!DB(owner, i, x)]

—[Free(owner, ptr)] —

[{Counter(ptryey,i+ 1), \DB(owner,i,data)]

The addition operation is abstracted with ‘+” multiset union
operator. The action-label Free(owner, ptr) restricts the
counter value to increase monotonically using the restriction
axiom as described in §4.3. An abounded instantiation of the
rule will introduce the unbounded copy of database fact in the
system state with data received from other sources (public
channel in this case) and unique counter values as indexes.
Any receiving rule can utilize pattern matching to ensure
that the received database fact’s index matches with the
requested index received from other sources. This approach
models a readable and append-only key-value database, as
the persistent fact cannot be deleted from Tamarin system
once introduced.

Loops. In the rule described for the indexable database, the
fact Counter creates a loop where each instantiation of the
rule represents one iteration of the loop. Therefore, a loop
is modeled with a persistent counter fact which consumes a
value i in its premise and produces the the same fact with
value i+-‘1’ in the conclusion. Restriction over the action-
label Free(owner, ptr) controls the monotonicity of the loop.
However, this approach models an infinite loop. In order
to limit the loop to maximum # iterations, an action-label
Log(i) can be added to the rule’s action with restriction axiom
V Log(i) = not(3 i = n+z) where n represents ‘+’ operator
applied over symbol ‘1’ n times. The axiom enforces that
after reaching a counter value of n, further addition for any
value of z is not allowed.

Branching. Consider an enclave-process modeled as a se-
quence of three rules r1—r2—r3. To introduce a branch
in place of r2, replace the rule r2 with r2_if and r2_else
rules with the if and else conditions enforced with action-
label controlled by restriction axioms in the rule’s action part.
Identities are passed on via a linear thread facts as described in
§4.3 in both rules. Since only one of the if — else conditions
will be true, only one of the r1—r2_if—r3orrl—r2_else
sequence will be realized at a time.

For example, in ecall E2 of Figure 2, Q_if and Q_else
rules models a if — else statement. The restriction axiom
action-label Less(valG, local_a) (at Q_if5) enforces
valG < local_a and Geq(x,y) (at Q_else3) enforces
valG >= local_a. For each instance of an enclave-thread,
only one of the condition holds true based on the enclave-
thread specific instances of local variable local_a and the
global variable valG.

5 Case Studies

In this section, we present three case studies to showcase our
approach towards automated verification of state continuity.

5.1 State Continuity w/ Monotonic Counters

Hyperledger Sawtooth [1] is a permissioned blockchain frame-
work to build customized decentralized applications. Saw-
tooth supports multiple consensus protocols, including a
Proof-of-Elapsed-Time (PoET) that leverages Intel SGX to
ensure each node’s fair participation in the consensus proto-
col. PoET protocol works in two phases: the sign-up phase
and the election phase.

To join the distributed network, a node launches an enclave
which generates a pair of asymmetric keys and sends the
public key certificate (together with a linkable attestation
signature) to the network. Thus the identity of an enclave
(and the node) can be uniquely identified by the certificate.
Additionally, a trusted MC will be created to enforce unique
PoET certificate generation per node. After this sign-up phase,
the node qualifies for the node election phase.

The election phase of Sawtooth V1.0.5 [3] is described
in Figure 3. Two ecalls are implemented to allow the node
to participate in the block leader election. The first ecall
CreateWaitTimer (CWT) performs three major steps. First,
it records the current time as the reference start time using
trusted time API time_ref and generates a random time
duration as wait_duration that the nodes must wait. Sec-
ond, it increments the associated MC and records the counter
value in MC_ref. Third, it encapsulates time_ref, MC_ref,
and wait_duration in an object waitTimerObject, which
is signed with the private key of the node and transferred
out to the application, so that the node can wait outside the
enclave for the wait duration before invoking the second ecall.

The second ecall CreateWaitCertificate (CWC) per-
forms several checks to ensure the fairness of the protocol:
First, it unseals the approved sign-up data created during the
sign-up phase. Second, waitTimerObject is verified with
PoET node’s public key to ensure the integrity of encapsulated
variables. Third, the latest MC value is read and compared
against the reference value. Fourth, by reading the current
time, it calculates whether the elapsed time is greater than
the expected wait duration. Only after all the checks pass
does the enclave generate a PoET certificate to establish the
proof of the elapsed wait time. Before returning, the MC is
incremented in order to prevent another certificate generation
without any wait time. Once the certificate is broadcasted
into the peer-to-peer network, the node with the certificate of
the smallest wait duration wins the round and is allowed to
publish a block in the ledger.
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Figure 3: Protocol workflow of Sawtooth PoET.

5.1.1 Tamarin Model

We model one ISV and multiple nodes in the blockchain
network. The association network has three layers: ISV, Plat-
Jorm/MRENCLAVE/Users, and enclave-process. The ecall
CWT is modeled as a sequence of two rules and CWC is
modeled as three rules. MC is modeled in the same way as
described in §4.5. MC counters are associated with the same
MRENCLAVE owner policy. The ecall CWT receives sign-up
information, and returns the reference MC value and its sig-
nature, and the sealed sign-up data, which will be used by
the ecall CWC. CWC performs checks of the input data, and
generates a certificate if all checks pass. The wait operation
is abstracted away.

Rules representing critical events are designated with
specific action-labels. For example, the CWC rule for
generating the certificate generation event is marked with
the action-label PoETCertificate_valMC (platform,
MC_ref), where platform represents the node’s identity and
MC_ref is the reference MC value obtained from the MC.

In order to aid the termination of the proof, we also in-
cluded two helper lemmas (see §2.2.5). The first lemma states
that each MC read or increment rule instance must have a cor-
responding antecedent MC create rule instance. The second
lemma ensures that the MC must increase monotonically.

5.1.2 Security Property

The security property studied here is to ensure fairness of the
protocol. Specifically, for each CWT ecall, only one CWC is
allowed to generate a certificate after the duration has passed.
This is enforced by the increasing MC values. The applica-
tions state transits in the following sequence:

1. MC value is less than the reference value = the certificate
is not generated yet;

2. MC value equals the reference value = generate the cer-
tificate and increment the MC value;

3. MC value is greater than the reference value = Abort
(certificate as already been generated).

The property, as shown below, states that a node cannot
generate two certificates with the same MC_ref.

All PoETCertificate_ex (platform, MC_ref) @tl
& PoETCertificate_ex (platform, MC_ref) @t2
==> #tl =#t2

5.1.3 Analysis Results

For the vulnerable version V1.0.5, Tamarin shows that the
security property does not hold. In the proof graph, process
identity helps in tracking different enclave-processes. The at-
tack is shown by instantiating two parallel enclave-processes,
with shared MC, which can read the same reference MC value
using read API before certificate generation. The detailed at-
tack graph, produced by Tamarin, is shown in Appendix B
for readers of interests. The vulnerability exists due to using
a non-incremental API, sgx_read_monotonic_counter, to
gauge the certificate generation state, especially one where an
adversary can repeat this state by exploiting multiple enclave-
processes. We have confirmed the attack validity in the Saw-
tooth SGX code.

The vulnerability is fixed in the latest version of Sawtooth
[2] by revising the implementation of the ecall CWC. Specifi-
cally, the call to sgx_increment_monotonic_counter was
moved to the beginning of ecall. This prevents the second con-
current ecall from generating the certificate without increasing
the counter. We accommodate the change into the Tamarin
safe model by replacing Read MC API with Increment API
and omitting the Increment MC API after successful certifi-
cation generation. After this change, the desired property is
proved. That is, only one certificate with unique reference
MC value can be generated per node per election round.
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5.2 State Continuity with Global Variables

SGXEnabledAccess [19] is a secure remote monitoring frame-
work for IoT devices. Due to limited computing power and
resources of the [oT devices (e.g., Samsung SmartHome), the
collected IoT data is often sent to a remote cloud server for
further processing. One application of such a framework is
remote patient monitoring. Personal vitals of a patient are
collected by several IoT devices’ sensors and aggregated by
a trusted broker (TB) gateway on the user side; the data is
sent to a cloud server for analysis and processing by health
care providers (HCP). TB maintains a user-defined policy
specifying which HCP services can access the patient data
and provisions secret keys and the encrypted data to the HCP
cloud application accordingly. SGX is leveraged on the HCP
side to protect user data from unauthorized access.

To allow the user to manage the access control to the her
uploaded data, a heartbeat protocol is introduced between
the TB and HCP enclave. After establishing a secure RA
session with the HCP application, the TB program period-
ically sends encrypted heartbeat signals to the HCP cloud.
Each signal consists of two parameters: 1) an activeness flag
(i.e., is_revoked) indicating whether the uploaded data can
be accessed and 2) a monotonically increasing counter for
indexing the heartbeat signals. As long as the user allows
her uploaded data to be accessed within the HCP service, the
heartbeat signal is sent with an active state. Once a user de-
cides to revoke access to her uploaded data, the last heartbeat
signal is sent with an inactive state. On the HCP side, heart-
beat signals are processed within an SGX enclave through
an ecall ecall_heartbeat_process. The enclave decrypts
the message (with the key derived from the remote attesta-
tion) and retrieves the counter value and the activeness flag.
The enclave maintains two global variables to track the latest
counter and to ensure the maximum allowed duration between
heartbeat signals. These two global variables serve to prevent
replays of the heartbeat signals and packet delays.

5.2.1 Tamarin Model

We model multiple users (represented by TBs) communicat-
ing with the HCP application. Since the ISV and platform
entities were not required in enclave operations, the associa-
tion network consists of only one layer—the enclave-process.
As shown in Figure 4, we modeled the ecall
heartbeat_process as a sequence of four rules cover-
ing steps 1-2, 3, 4, 5, respectively. Additional two rules are
introduced to cover branching at step 3 and 5 of the enclave-
thread instructions. The thread decrypts the received heartbeat
signal, performs various checks, and updates the global
variable accordingly. The events of global variable update
are recorded by designating a specific action-label E_update
(p_id, t_id, k, ptrG, valG, ptrG_new, valG_new,
is_revoked_rcvd) to the ecall rule, which updates the
global variable. Here p_id and t_id are the process identity

SGXEnabledAccess

Trusted Broker IoT Device ‘

Secure RA Session (KRA)

enc_signal « {sc (Signal Counter)=1, is_revoked=0}K

gmac < th(enc_si gnal)}KRA gsc (Global State Counter) = 0

active signal = enc_signal || gmac |
I
- ecall heartbeat_proces(active_signal) -
1. Decrypt sc, is_revoked
2. VerifyGMAC {h(enc_signal)}KRA
3. If gsc<sc
4. | gscesc
i if is_revoked ==0
i ¢ L SUCCESS
i else
7. L REVOKED
else

8. > REPLAY
___________ [ .
Executes step 1-6 above

(<]

enc_signal « {sc=2, is_revoked=0}K  ,

gmac « fh(enc_signal)}K,

active signal = enc_signal || gmac

ecall heartbeat_proces(active_signal)
Executes step 1-6 above

enc_signal < {sc=n, is_revoked=1}K
gmac « fh(enc_signal)}K

RA

inactive signal = enc_signal || gmac

\
ecall heartbeat_proces(inactive_signal)
Executes step 1-5 and 7 above

— S

Figure 4: Interaction workflow of one TB device with ecall
heartbeat_process

and thread identity; k is the RA key; ptrG and valG are the
pointer and value of the counter values before the update while
ptrG_new and valG_new are the updated pointer and value;
and is_revoked_rcvd denotes the status of the accessibility.

It is enough to consider two distinct inputs available to ad-
versary to model replay attacks. Therefore, we modeled two
active signals followed by one inactive signals. The global
variable is shared among multiple enclave-threads. RA proce-
dure is abstracted with TB and HCP enclave thread starting
with a pre-knowledge of RA session key; the communica-
tion channel is modeled with fact; GMAC tag is model as
h(enc_signal)Kga.

To resolve the non-termination issues, we introduced five
helper lemmas to ensure that (1) the RA session keys are
never leaked to the adversary, (2) the thread rules of the same
ecall strictly follow the specified execution order, (3) each rule
instance for reading or writing global variables must have an
antecedent rule instance for creating the same global variable,
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Researcher (R) H Data Owner (O)

BI-SGX

Initialize Database
index « 1

Secure RA Session (K, )

enc_data « {O_info, data}K
gmac < {h(enc_upload)}K,

RA_O
RA_O

request = enc_data || gmac

1
—-~-- ecall seal_data(request) ---
Decrypt O_info, data :
VerifyGMAC {h(enc_data)}K “o :

SGX Seal Policy MRSIGNER 1
seal_data < {owner, data}seal_key :

L T ___________ 1
DBStore (index =1, seal_data)
index « index + 1

Secure RA Session (K
I

enc_query « {R_info, req_index = i}K

gmac < {h(enc_query)}K.

RA,R)

RA_R

RA_R

request = enc_data || gmac

- - ecall run_interpreter(request) =i
Decrypt R_info, req_index :

VerifyGMAC {h(enc_query)}KmiR :

————— ocall (req_index) ------
|

seal_data < DBGet (req_index)
I
ety ocall rel\:rn(seal_data) -——
1 SGX Unseal data
| enc_response « {data}KR&k
1
|

1
1
|

gmac < {h(enc_response)} :

_____________________ 1
response =enc_reponse || gmac (
f

Decrypt data
VerifyGMAC

{h(enc_respo: se)}KkAik
E |

Figure 5: Protocol workflow of BI-SGX.

and (4) & (5) global variables cannot be read or written in
parallel by concurrent threads in a critical section.

5.2.2 Security Property

In this system, the heartbeat signals sent by the TB contain
monotonically increasing counter values as index, with larger
index indicating more recent status of the accessibility of the
uploaded data. Hence, it is required that the HCP enclave
keeps track of the most recent status with the received signals.
That is, the HCP enclave updates the global variable only
when receiving a heartbeat signal with a larger counter value.
This security property is shown below.

All E_update (process_id, thread_id, K_RA, ptrG,
valG_old, ptrG_new, valG_new, ’active’) @t
==> (Ex z. valG_new = valG_old + z)

5.2.3 Analysis Results

Tamarin generates an attack path as follows. The attacker
replays the same signal to two thread instances; the execution
of the two threads are manipulated and synchronized until the
check instruction (step 3 in Figure 4); they both update the
global state variable with the same value at step 4. The global
state variable is used to track the most recent signal counter
value and prevent replay. However, the attacker could use the
method to extend the subscription period of a user by using
stale state values.

We have verified the attack on the original version of the
code, confirming the effectiveness of the attack. To fix the vul-
nerability, we introduce a per process lock for global state vari-
able check-and-set instruction. We patched Tamarin model
accordingly, and the security property was proven.

5.3 State Continuity with Sealed Data

BI-SGX [42] is an open-source project that aims to provide a
confidential cloud platform with Intel SGX. BI-SGX supports
two types of users: 1) data owners (e.g., patients) who own the
data and upload it to the cloud; 2) data users (e.g., researchers
or medical practitioners), who utilize, analyze, and perform
computations on the data.

The protocol of BI-SGX is described in Figure 5. The
data owner sends data to the SGX application via the ecall
seal_data, which decrypts the messages from the secure chan-
nel, extracts the data and owner credentials, and wraps the
data and its ownership into a sealed chunk. The ecall returns
the sealed data, which is then stored in a database with a
monotonically increasing counter value as the index. In this
way, each uploaded data from the same data owner ends up
in the database with a unique index value.

To perform computation over the data, a researcher sends
an encrypted query to the SGX application. Some of these
queries may include an index to specify the target data. In this
case, the request is processed inside the ecall run_interpreter,
which issues an ocall with the requested index as the input.
The ocall queries the database with the index and locates the
sealed blob. The enclave unseals the sealed blob and performs
customized operations over the data and returns the results to
the users through the secure channel.

5.3.1 Tamarin Models

The association network consists of three layers: platform,
ISV/enclave-binary, and enclave-process. We model two
ecalls, one for the data owner’s upload request and the other
for the user’s data query. The ecall for upload request is mod-
eled as single rule and the ecall for data query is modeled as
a sequence of two thread rules. For the user’s data query, we
model only the data retrieval and ignore the concrete opera-
tions the user is interested.
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Two types of events need to be labeled: (1) the user’s
request of data is marked by an action-label RCHR_rcv
(RA_session_k, index_req) with RA_session_k repre-
senting the RA session key and index_req indicating the
index of the requested data; (2) the enclave’s response is
marked by another action-label E_reply (RA_session_k,
index_req, seal) at the ecall run_interpreter with seal
representing the sealed data obtained by the BI-SGX enclave
when processing the user’s query.

RA session keys and GMAC tag are abstracted in the same
way as described in §5.2.1. Database is modeled as described
in §4.8 with authentication. Integrity is abstracted by using a
dedicated database fact. The communication with the database
occurs over public channel as it is handled by untrusted code.

We introduce five helper lemmas: Two for preserving the
MC properties as described in §5.1.2; three others for proving
that each user and BI-SGX enclave communication uses a
unique RA session.

5.3.2 Security Property

The key challenge is to properly model state continuity in
this case. A replay occurs if the same data is retrieved and
processed by the BI-SGX enclave when the user sends queries
with different indexes. Hence, the security property consid-
ered is that with queries containing different indexes, different
data is retrieved and processed. The property, as shown below,
indicates that when two users’ queries containing different in-
dexes are processed, the sealed data involved in the processing
must be different.

All RCHR_rcv (RA_session_x, index_x) @tl
& RCHR_rcv (RA_session_y, index_y) @t2
& not (index_x = index_y)
==>
Ex E_reply (RA_session_x, index_x, seal_a) @t3
& (All E_reply(RA_session_x, index_t, seal_t) @t4
==> #t3 = #t4)
& E_reply (RA_session_y, index_y, seal_b) @t5
& (All E_reply(RA_session_y, index_t, seal_t) @t6
==> #t5 = #t6)
& not (seal_a = seal_b)

5.3.3 Analysis Results

By running the prover, Tamarin shows a replay attack of
sealed data. The root cause of this attack is that the associa-
tion between the index and data is maintained in the untrusted
storage, i.e., the database. Hence, the adversary could alter the
mapping and replay the sealed data. We have also confirmed
the effectiveness of the attack in practice. To fix this vulnera-
bility, we implement the mapping of the index and the data
within the enclave using MC, preventing the adversary from
modifying such mapping. In particular, we add MC value
inside the sealed data which can act as an index of the user
query. Since, the adversary cannot modify the index stored
inside sealed data, she cannot replay a sealed data for any
index other than the one stored inside. This index is checked
in the ecall run_interpreter to match with user’s requested

index. The property of state continuity was then proven using
the updated Tamarin model.

5.4 Summary of Case Studies

In the three case studies, Sawtooth tries to preserve the states
of PoET certificate generation using monotonic counters;
Heartbeat tries to maintain the recently received active heart-
beat signals, and BI-SGX tries to preserve the one-to-one map-
ping between the index and the sealed data. With Tamarin, we
are able to capture these vulnerabilities by carefully modeling
adversary behaviour and enclave operations.

Responsible disclosure. We have disclosed the vulnerabili-
ties to developers of these three projects. The Sawtooth team
have acknowledged our findings and patched the vulnerabili-
ties we discovered [2]. Developers of BI-SGX have planned
to address the discovered issue by altering the design of BI-
SGX.

We run the Tamarin prover (v1.7.0) on a machine with a
quad-core 1.80GHz Intel© Core™ i7-8550U CPU and 16
GB RAM, and Ubuntu Linux 18.04. We introduced helper
lemmas— two for Sawtooth, five for Heartbeat, and five for
BI-SGX—to help prove the target properties. We can see
that with vulnerable models studied in this paper, Tamarin
could discover attack traces within a couple of minutes, with a
longest case (Sawtooth) being 78 seconds. While for patched
versions, the proofs take a couple of hours to finish, with a
longest case (Heartbeat) of 2 hours and 4 minutes.

Table 2: Verification time and size of the Tamarin models.

App ) Attack ) Verif.ication # Model
Discovery Time Time Rules| LOC
Sawtooth [1] 1m 18s 25s 11 300
Heartbeat [19] Ts 2h 4m 7s 11 250
BI-SGX [42] 36s 37s 18 450

6 Discussion and Limitations

There are two major limitations of our approach. First, the
verification process is not completely automated. It requires
the users to manually translate the source code or design logic
of the enclave program into the Tamarin model. Such man-
ual efforts typically include modeling the program logic in
Tamarin, encoding the property of state continuity as a lemma
expressed in first-order logic, ensuring correct syntax and pro-
tocol behavior using executability lemmas [5], validating the
results from Tamarin’s output, and so on. As Tamarin is a
semi-automated tool, the users are also expected to interact
with Tamarin and refine the proof with several iterations.
Second, Tamarin may encounter non-termination problems.
When Tamarin models become complicated, the verification
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process may take very long time and sometimes never termi-
nate. Reasons of non-termination include partial deconstruc-
tions, looped construction, and undecidability. Details about
partial deconstructions and solution have been discussed in
prior studies [20,31]. Looped construction and unbounded
instantiation of terms force Tamarin to resolve similar
constraints repeatedly without converging the state spaces.
After careful observation of the recursive constraint structures
in the Tamarin interactive GUI, users can build helper lemmas
(§2.2.5) that prevent the proof branch from entering into
repeated loop, and thus allowing Tamarin to terminate in
many cases. Additionally, a looped construction could be par-
tially mitigated by constructing induction lemmas to discard
recursive dependencies, and by using restriction axioms to
minimize loops construction. Nevertheless, proving a property
for a given model is undecidable. Therefore, it is impossible
to ensure a termination in all cases. We plan to contribute to
the Tamarin community and improve the tool in future work.

Admittedly, our work is only the first step towards
automated verification of state continuity for SGX enclave
programs. While our approach in theory can be applied to
large, complex programs, the manual efforts involved remains
a major obstacle for developers to apply this approach
in practice. Future work will aim to fully automate the
verification process for developers with minimal expertise
in Tamarin. For instance, we will extend our approach with
LLVM to automate the extraction of SGX primitives and
integrate our solution with a learning-based approach to
resolve non-termination problems.

7 Related Works

Various solutions to provide state continuity have been pro-
posed. Memoir [41], ICE [49] and Ariadne [50] implement
libraries to interact with non-volatile memory protected by
TPM chips to provide freshness and integrity protection upon
each usage within untrusted code. These libraries act as inter-
mediary between TPM chips and untrusted code. To overcome
the limitation of slow speed of non-volatile memory writes,
these works suggest to reduce the number of writes by access-
ing the TPM only at boot time [41,49] or flipping only a single
bit per write using gray-code [50]. While these centralized so-
lutions require TPM chips, ROTE [38] and LCM [16] provide
distributed state-continuity solutions for state continuity.
Another line of research focuses on formally modeling and
proving the security of state continuity provided by these li-
braries and frameworks, which is also the focus of our paper.
In particular, Ahman et al. provide assertion based constructs
in F* verification tool for state preservation [6]. It introduces
monotonic state interfaces and stable predicates for efficient
modeling of states. RollSec [22] is a prototype framework for
extracting variable based program states using program syn-
tax, control flow and data flow information. It requires mon-
itoring, recording and compensation modules to identify and

fix state related rollback issues. However, these works do not
cover state rollback in TEE applications studied in this paper.

Moat [46] uses Boogie verifier [11] and Z3 SMT solver [24]
to provide assertion based formal framework to verify con-
fidentiality of enclave programs. Xu et al. provides Tamarin
based formal framework for modeling to prove confidential-
ity, authentication and privacy for ARM TrustZone’s chain of
trust and attestation protocols of TEE based applications [54].
Jacomme et al. extend SAPIC tool for Tamarin by providing
encodings for report functionality for TEE based applica-
tions [33]. The report functionality is introduced to extend
Tamarin modeling to use direct reporting construct in SAPIC
pi calculus language to prove authentication of TEE appli-
cations to remote clients. Our work focuses modeling and
proving properties different from these work, i.e., state conti-
nuity of SGX applications using Tamarin.

For state-continuity solutions based on TPM chips, TP-
M/TPM2.0 related interaction and applications are formally
verified [9,23,25,44,47]. These works model TPM specific in-
terfaces (API or TPM commands), configuration registers and
secure key management unit and prove confidentiality, remote
or local attestation (direct anonymous attestation and root of
trust for measurement) [9,23,47] and authorization [25,44]
of the interacting applications. Our work covers a broader
range of state-continuity scenarios. For applications that re-
quires TPM chips, our focus is to verify whether the SGX
applications use these TPM chips correctly.

8 Conclusion

In this paper, we make the first attempt towards symbolic
verification of state continuity properties for enclave programs.
We show that SGX-specific semantics and operations can be
modeled as multiset re-writing rules and the state continuity
property can be reasoned using the Tamarin Prover. We have
shown the effectiveness of the method on three types of state
continuity flaws in three open-source projects. Our study
shows the great potential of symbolic verification tools, such
as Tamarin Prover, in more diverse and complex scenarios.
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A Rule Execution Criteria

In the Tamarin proof process, only certain rules are considered
to be part of the trace. For a given target lemma, a candidate
rule is considered executable only if it satisfies the following
criteria:

1. The premise facts (except the built-in facts Fr and In)
of the candidate rule should be produced by other rules
and can be consumed from the current system state.

2. The variables of action-labels specified in the candidate
rule’s action part should comply with the model’s restric-
tion axioms and the target lemma’s variable constraints.

3. The execution of the rule should respect the type restric-
tion (§2.2.4) constraint for all the variables prefixed with

~” symbol. However, this restriction is nullified if the
variables are part of a persistent fact.

4. Variables with the same name across all received facts of
arule should receive the same value (pattern matching).

5. The order of the candidate rule’s execution, for time-
points of all action-labels of the candidate rule, should
satisfy the timepoint constraints specified in model’s
restriction axioms and the target property.

6. If the candidate rule execution is part of the target lemma,
which is influenced by a helper lemma (§2.2.5), the rule
execution should satisfy the helper lemma’s constraints.

The rules satisfying above conditions can be executed in
parallel. Upon execution of a rule, the consumed linear facts
are removed from the system state and the produced facts are
added to the system state. During the verification process, the
backward search algorithm ensures that a valid rule execution
trace satisfy the above mentioned criteria and the trace main-
tains a consistent system state when looking at the top-down
execution of the model.

B Tamarin Sawtooth attack trace

Figure 6 shows a Sawtooth attack (§5.1.3) produced by
Tamarin in interactive GUI mode. In the trace, ovals denote
adversary actions; rectangle boxes denote model rules;
bold and gray arrows denote fact dependency for linear and
persistent respectively; dotted, red and black arrows show
adversary message reuse, message deductions and public
channel interaction.

The attack can be seen at the last two CWC rule instances
of enclave-process instances p_id and p_id. 1. In these rules,
the certificate is generated with the same MC_ref value (sym-
bolically denoted as ‘1’+°1’) in the same platform with iden-
tity instance platform.
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Figure 6: Tamarin produced attack trace for Sawtooth
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