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Abstract

During the use of Virtual Reality (VR) applications such as gam-
ing, education, and military training, sensitive information may be
generated or collected by VR sensors, raising user concerns about
potential data leakage. This highlights the critical need for effec-
tive user authentication to prevent unauthorized access. Existing
authentication methods for VR are often either cumbersome (e.g.,
entering passwords via handheld controllers), reliant on special-
ized hardware (e.g., iris recognition), or vulnerable to credential
replay attacks. In this study, we propose PipID, a lightweight VR
authentication approach that leverages commercial off-the-shelf
(COTS) eye trackers integrated into VR headsets. PipID is based
on the fact that users’ pupillary responses to visual stimuli vary
uniquely. Thus, by displaying lights of randomly selected colors (i.e.,
wavelengths) on the VR screen, PipID can utilize pupil diameter
responses to these wavelengths as the basis for authentication. For
pupil data collected by precision-limited COTS eye trackers, PipID
mitigates the impact of unrelated eye movements (e.g., blinks) and
leverages pupillary response differences between the left and right
eyes to further enhance the granularity of authentication features.
Additionally, the randomized sequence of light colors helps prevent
replay attacks. We implemented PipID on a COTS VR headset and
tested it with 52 participants. Experimental results show that PipID
achieves an accuracy of 98.65% and maintains robust performance
under various conditions (e.g., keeping 98% and 91% accuracy after
7 and 14 days respectively).

CCS Concepts

• Security and privacy → Biometrics; Privacy protections.
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1 Introduction

Virtual Reality (VR) has reshaped users’ digital experiences through
immersive simulated environments, making it extremely popular
and widely applicable. The number of VR users in the United States
has reached 77 million in 2024 [15], and with growing user interest,
the global market size of VR is projected to reach USD 520 billion
by 2031 [10]. By utilizing various devices like head-mounted dis-
plays (HMDs) and handheld controllers, users enjoy an immersive
experience in VR applications. However, this process also exposes
them to the risk of data breaches, especially in sensitive contexts
such as financial transactions [4, 48], private meetings [7, 40], or
military simulations [30, 52]. Unauthorized access to VR devices
can lead to privacy leaks, economic fraud, theft of virtual assets,
and business disruptions, posing significant threats to individual
livelihoods and communities.

Unfortunately, text-based password solutions, the current main-
stream authentication methods adopted by VR devices, suffer from
the cumbersome use of physical hand controllers or virtual key-
boards [24, 62]. According to statistics in [78], it takes an average
of 10.5 seconds to enter a 4-digit PIN in VR. These methods are
also vulnerable to side-channel attacks [16, 32, 41] and impose an
additional memorization burden on users. In addition to traditional
password entry, there is growing interest in exploring biometrics
for VR user authentication. With advanced tracking sensors, a rich
source of biometric data, including both static and dynamic charac-
teristics, can be utilized for this purpose.
Biometric authentication in VR is still immature. Static bio-
metrics, such as fingerprints, face recognition [31], and iris scan-
ning [6], have long been considered reliable for user authentication.
Nevertheless, the sophisticated measuring devices increases their
deployment cost in VR scenarios. Moreover, as irreversible per-
sonal identifiers, data breaches could leave individuals without an
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Figure 1: PipID utilizes pupil diameter responses to the VR

headset screen for user authentication.

alternative credential to prevent replay attacks [54, 67]. In con-
trast, dynamic biometrics rely on users’ movement features, such
as facial expressions [80], eye movements [81, 82], and gait informa-
tion [57], derived from performing specific actions [42, 47, 55, 57]
or responding to audio/motion commands [82]. However, these
methods require active user participation, which adds an extra
burden on users, such as walking in [57] or concentrating on ex-
ternal music in [82]. Considering above-mentioned issues when
deploying existing works in VR, it is desirable to design a novel
authentication mechanism which meets following requirements: 1)
User-effortless: eliminating the need for any active user actions; 2)
Commercial-deployable: fully utilizing built-in VR headset devices
without requiring specialized equipment; 3) Anti-replay: resistance
to replay attacks.
Motivations of PipID. In this study, we propose PipID, a light-
pupillary response based authentication system. As shown in Fig-
ure 1, PipID leverages the user’s pupillary response to lights of
different wavelengths displayed on an HMD’s virtual screen for
authentication. The chosen light-pupillary response offers two ad-
vantages: (1) Current VR headsets, such as the PICO 4 Pro [50],
Meta Quest Pro [63], and Varjo XR-3 [69], are now equipped with
commercial-off-the-shelf (COTS) eye trackers. This eliminates the
need for additional specialized devices, enabling the widespread
application of PipID. (2) As the light changes, the distinct spectral
sensitivities and photon fluxes of photoreceptor cells in the retina
produce different neurological reflexes [5, 33, 39], resulting in cor-
responding pupil constriction or dilation. According to research in
the biological field [3, 72, 76], the variability of this uncontrolled,
spontaneous eye movement among individuals is caused by the
unique biological characteristics of neural pathways and iris muscle
structure, making it nearly impossible to mimic through voluntary
eye movement control. Additionally, it has been shown that left
and right pupil diameters are different even under the same light-
ing conditions [51], which further enhances the granularity of the
authentication process.

Despite the advantages of light-pupillary response, achieving the
design goals of PipID faces the following challenges. RQ1: how can
we select appropriate light stimuli for the VR screen that are user-
friendly while generating pupillary responses significantly different
among users? RQ2: it is well-established that data measured by
commercial eye trackers in VR have lower accuracy compared
to specialized devices[21, 56, 65, 71]. Thus, how can we capture

effective features from data with limited accuracy? RQ3: to address
the anti-replay goal, how can we mitigate replay attacks where
adversaries exploit outdated pupillary responses?

In this study, to answer RQ1, we first conduct a series of case
studies which validate that variations in pupil diameter under dif-
ferent light wavelengths can effectively authenticate users. By ad-
justing light colors, PipID enables users to freely look around the
virtual environment without needing to maintain a fixed gaze or
perform specific actions. Furthermore, we use the Kolmogorov-
Smirnov (KS) test to select the most suitable visual stimuli for each
user during login. To address RQ2, we propose deriving efficient
time and frequency-domain features from the raw data and enhanc-
ing our feature set by leveraging the binocular tracking function
of the VR eye tracker to obtain the differences in pupil diameter
between left and right eyes. Finally, to tackle RQ3, PipID alters the
wavelength sequence within the visual stimuli during each login
attempt to generate a randomized challenge. This approach ensures
that credentials (i.e., the pupillary responses) is hard to predict with
high randomness.

To evaluate the system’s performance, we conduct experiments
with 52 volunteers using commercial VR headsets. For each volun-
teer, we present 10 lights with different wavelengths, each lasting 5
seconds, and repeat this process 20 times, constructing a dataset of
10,400 light-pupillary response profiles. PipID achieves an overall
accuracy of 98.65% and demonstrates robust performance across
various factors, including registration cost, number of light wave-
lengths, and stimulus duration. Besides, PipID demonstrates effi-
ciency against replay attacks by reducing the attack success rate to
2.40% when the attackers fail to predict the challenge. Finally, the
longitudinal study shows PipID’s consistent performance, achieving
98% and 91% accuracy after 7 and 14 days, respectively.

The main contributions of this study are:
• New user authentication in VR. We propose PipID, a lightweight
and user-effortless authentication mechanism that leverages the
light-pupillary response in both eyes under various colors to
verify user identity.

• Effective features. We propose effective statistical, temporal, and
frequency-domain features, and further enhance them by utiliz-
ing inter-ocular differences using the binocular tracking capa-
bility of the VR eye-tracker.

• Robust performance. Experimental results demonstrate that PipID
achieves an average accuracy of 98.65% for user authentication
and performs robustly under various impact factors.

• Public-available dataset. A dataset containing users’ eye move-
ments under 10 lights with different wavelengths will be made
available to the public for further research in VR authentication.

Ethical consideration. The dataset collection procedures are un-
der the approval of the Institutional Review Board (IRB) of our
institutions. We ensure that all volunteers are fully informed about
the purpose, duration, and potential risks of the study. The light
sources selected for the experiment are gentle and harmless to hu-
man eyes, as the rays from these sources will experience diffuse
reflection off the environment and objects before entering the eyes
with moderate light intensity. Furthermore, all data collected during
the study is handled with the utmost care to protect participant
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privacy. Identifiable information is removed and data sharing is
restricted to research purposes.
Data availability and online appendix.We have open-sourced
the datasets and codes of PipID at our project website https://pipid-
vr.github.io/ to facilitate further research and development in VR
user authentication. Besides, due to the page limit, all appendix are
also presented in our project website.

2 Preliminaries

2.1 User Authentication in VR

The rapid development of VR has been evident in the past few years,
accompanied by growing popularity [10, 15]. As personal devices,
VR systems often store users’ sensitive data (e.g., emails, multimedia,
browsing history, login accounts) during their usage. For instance,
Gucci [22] has launched Gucci Town within the Roblox metaverse
recently for online shopping, where users may store their account
and credit card information for auto-login and purchase. In this
case, leaving the device unguarded to malicious people may expose
it to security breach and even financial loss [81]. Therefore, the
need for secure and usable ways to authenticate legitimate users
becomes even more urgent. The existing user authentication in VR
can be categorized into following four categorizes.
Knowledge-basedmethods.As intuitive authentication solutions,
knowledge-based methods, including passwords and PINs entry,
are mainly adapted in VR through gesture-based text input. Despite
their high deployability, numerous users have voiced dissatisfac-
tion with the unwieldiness of virtual keyboards [62, 73]. We also
conducted a user study (in the online appendix) and found that the
average time for inputting a digital password consisting of 8 letters,
2 numbers, and 1 symbol in VR exceeds 13.69 seconds. The poor us-
ability discourages users from adopting stronger passwords. What’s
worse, password is susceptible to side-channel attacks [2, 16, 32, 41],
where external observers can easily capture the videos (e.g., Hidden
Reality attack in [16]) or sensing signals (e.g., Wi-Fi signal based
attack in [2]) of hands typing to infer the entered passwords. The
immersive nature of VR often obscures users’ awareness of such
surrounding attackers in public.
Token-based methods. In token-based approaches, the headset
may present a short code for input on an auxiliary device or request
scanning of a QR code generated by the auxiliary device. However,
this approach is inconvenient for users as it necessitates carrying
external devices when using standalone VR devices.
Static biometrics. Static biometrics rely on static images or data of
one’s biological characteristics which remain relatively stable over
time. Renowned for their superior usability and accessibility, static
biometrics (primarily iris scan [6]) have emerged favorable for VR
user authentication. However, the inherent nature and irrevocability
of static biometrics raise privacy concerns. Attackers can exploit
replay attacks using fake fingers [67], masks, and high-resolution
iris images [54] if such data are leaked. Besides, the sensors required
for static biometrics are often specialized and expensive, limiting
their widespread adoption in VR.
Dynamic biometrics. Dynamic biometric technologies focus on
analyzing the dynamic process of biological characteristics, such as
behavioral patterns and voice signatures. The widespread capability
of modern VR devices to sense user behaviors makes it a popular
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Figure 2: Data type provided by eye-trackers. Blue indicates

data exclusive to specialized equipment, while orange marks

data obtainable from both specialized and VR devices.

research subject for user authentication. Some methods involve
performing specific actions like walking [49, 57], typing [49], or
grasping objects [47, 49] due to the inherent heterogeneity of human
muscle structures. However, these methods are often physically
demanding or require substantial space. Unobstructed hand and
body movements remain vulnerable to observation-based attacks.
In contrast, user authentication leveraging eye-tracking data stands
out as a promising approach by presenting specific stimuli to elicit
personalized eye movements.

2.2 Eye-tracking Technology

Principle of eye-tracking technique. As illustrated in Figure 2,
common eye movement behaviors include saccades and fixations.
Saccades are rapid eye movements that shift the foveal vision1 from
one point to another, while fixations involve maintaining the foveal
vision on a target for a certain duration to capture detailed visual
information. Fixations are not entirely static, as they involve three
types of micro-movements: micro-saccades, nystagmus, and drift.

To acquire rich oculomotor data, eye-tracking technology has
emerged prominently. Currently, there are two primary types of eye-
tracking: electro-oculography (EOG) and video-based eye-tracking.
EOG measures the resting potential of the retina to record eye
position and movement [37, 44, 45] via invasive electrodes, which
is not suitable for user authentication. Conversely, video-based
eye-tracking captures high-resolution eye images including pupil
and corneal by cameras. Advanced image processing algorithms
calculates the gaze direction vector by tracking the position of the
pupil center, while simultaneously computes the pupil diameter
and eyelid aperture.
Eye-tracker in specialized device. The specialized device em-
ploys a video-based eye-tracker monitoring pupil and corneal reflec-
tions. Typically, multiple cameras are leveraged to capture stereo
images of both eyes in three-dimensional space to accurate cap-
ture gaze points, pupil diameters, and blinks. The professional eye-
tracker possesses exceptionally high precision and resolution, with
accuracy down to 0.1-0.5 degrees and sampling rates up to 1200 Hz
in Tobii for instance [66]. Therefore, eyelid aperture, fixation and

1Foveal vision refers to the visual perception originating from the fovea, a small central
pit in the retina that is densely packed with cone cells. The fovea is the most sensitive
part of the retina and is specialized for high-resolution visual acuity.
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saccade patterns, scanpath, and even intricate micro-fixation and
micro-saccade can be output or analyzed from the outputted data.
Eye-tracker in commercial VR device. Currently, an increasing
number of VR headsets have equipped with eye-tracking technol-
ogy. The embedded infrared cameras record eye videos, enabling the
extraction of gaze point, pupil size, and eye blinks, which provides
a better understanding of the user’s visual attention in VR.

Figure 2 outlines the types of eye movement data relied upon
in existing works, along with their availability in specialized eye-
tracking devices and different VR headsets. It is shown that the
types of data offered by VR headsets are limited in scope. Even if
a VR headset are capable of offering the same types of data as the
professional one, they often fall short in terms of data accuracy and
frequency [21, 56, 58, 65, 71]. In the online appendix, we present a
detailed comparison of several types of specialized and VR devices
in terms of their eye-tracking capabilities.

2.3 Eye Motion Based Authentication

Using specialized devices for authentication. The diversity
in the optic nerve pathway and muscles controlling eyeballs con-
tributes to the high personal specificity of individuals’ eye move-
ments [9, 36]. Several studies [12–14, 19, 20, 53, 61] have achieved
user authentication utilizing eyemotion data (e.g., fixation point and
duration, saccadic speed and direction, micro-fixation and micro-
saccade, scanpath and pupil diameter) extracted from specialized
devices. The above mechanisms are task-driven and require users
to actively engage by gazing at moving targets or performing tasks
such as reading text. Meanwhile, several studies have also employed
pupil light reflex to achieve passive authentication. [75] utilizes
iris patterns and pupil diameter under low or non-visible light
conditions for authentication purposes, and [74] proposes using
three different light intensities for pupil diameter-based authenti-
cation. Nonetheless, all these approaches employ high-precision
eye-trackers (e.g., 500 Hz eye-trackers in [61]), which are rarely
seen in consumer-grade VR headsets due to cost considerations.
Authentication on commercial VR devices. Recent researches
[35, 47, 49, 79, 81, 82] have focused on VR user authentication, and
they all necessitate active participation from users, either by per-
forming actions or receiving instructions. In [49] and [47], users are
required to execute specific body movements (like grasping, walk-
ing, typing, etc.), while their head, hand, and eye motion data are
captured to derive unique behavioral patterns. Such methods are
space-consuming and effort-intensive, unsuitable for users with im-
paired motor functions, and the overt body movements make them
susceptible to shoulder-surfing attacks. Besides motion patterns,
certain interactive stimuli (e.g., moving objects, sounds, videos) can
also trigger reflexive eye movements [35, 79, 82]. [35] leverages
the public dataset GazeBase and primarily focuses on optimizing
authentication models. Though [79] claims to achieve implicit con-
tinuous authentication in VR, their implementation depends on
smart glasses, and still requires users to focus on a moving cross.
[82] employs pupillary responses triggered by audio stimuli, which
take a relatively long time for authentication. In addition, the ap-
proach proposed in [81] combines knowledge-based and biometric
elements by utilizing blinking rhythms as passwords, which also
put pressure on user’s memory. The blinking inconsistency across

Table 1: Summary of Eye Motion Based Authentication.

Study Stimulus Feature types Built-in VR
Sensors

Passive
Authentication

[61] moving dots fixation & saccade ✗ ✗

[19] reading scan path ✗ ✗

[14] various tasks fixation & pupil
diameter ✗ ✗

[75] non visible light iris pattern&
pupil diameter ✗ ✓

[74] light intensity pupil diameter ✗ ✓

[47] body motion gaze position ✓ ✗

[79] moving cross gaze position ✗ ✗

[81] / blink rhythm &
pupil diameter ✓ ✗

PipID light color pupil diameter ✓ ✓
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Figure 3: Light perceiving, processing and responding.

different instances contributes to the method’s instability. We have
summarized the aforementioned representative eye-motion based
authentication methods in Table 1 and made comparisons with our
proposed method.

3 Threat Model and Motivations

3.1 Threat Model and Goals

In this study, the adversary is an unauthorized individual attempting
to gain illicit access to a VR device by impersonating a legitimate
user. The ultimate goal is to steal sensitive data from the victim,
such as healthcare records, financial information, or commercial
secrets. We assume the following two attack scenarios:
• Basic scenario: physical access. The adversary may obtain the
VR device through theft, loss, or unauthorized borrowing. With
physical possession, the adversary attempts to use their own
eye motion credentials to bypass the authentication system.

• Adaptive attacks: access to sensors. We assume the attacker has
the capability tomanipulate the eye-tracking sensors after sneak-
ing a user’s eye video or historical authentication data from
social networks. Thus, the attacker can replace the data trans-
mitted from the eye-tracker to the authentication system by the
historical data during authentication.
In this study, PipID should defend against adversaries with any

of the above-mentioned attack capabilities. Note that we do not
consider adaptive attacks that rely on any of the following three
stronger assumptions: (1) the adversary can obtain the challenge
stimuli, which consist of a randomized sequence of colored lights
displayed on the virtual screen; (2) launch attacks at the system
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level of VR devices; and (3) manipulate their own eye movements
to imitate the victim’s pupillary response. We discuss the feasibility
of implementing the above three attacks on PipID in Section 6.

3.2 Motivation of PipID

3.2.1 Basic Insights and Research Questions. The human pupil
is a small circular aperture at the center of the iris, serving as
the gateway for incoming light. Pupil diameter is influenced by
various factors, including individual age, ethnicity, as well as vi-
sual stimuli such as light intensity, color, and the distance of tar-
get. Existing researches have demonstrated that human pupils ex-
hibit varying degrees of constriction under different colored light
[5, 11, 18, 23, 26, 33, 68, 77]. As illustrated in Figure 3, when light
traverses the pupil, it is received and processed by distinct photore-
ceptor cells located on the retina. These photoreceptors facilitate
visual phototransduction, converting the energy of photons into
a neuronal signal. The major types of photoreceptors encompass
cone cells, rod cells, and intrinsically photosensitive retinal gan-
glion cells, among which cone cells primarily govern the perception
of colored light.

Concentrated in the fovea centralis or parafovea2 of the retina,
cone cells’ sensitivity and response speed to light vary with color
due to their possession of three distinct visual pigments, each capa-
ble of absorbing red, green, and blue light. As light changes, cone
cells detect these alterations and transmit different signals to the
nervous system (i.e., the brain). In turn, the brain modulates the
tension of iris muscles via neural pathways such as the oculomotor
nerve, thereby altering pupil size. The iris muscles consist of multi-
unit smoothmuscles. The circular muscle layer (pupillary sphincter)
leads to pupil miosis, while the radial muscle fibers (pupillary dila-
tor muscle) results in pupil dilation. Though the superficial process
appears to be the impact of different colored light on pupil diameter,
our study actually adopts the terminology of using light sources of
different wavelengths given that the mapping relationship between
RGB colors and wavelengths.

In this section, we aim to validate our motivation through a series
of preliminary case studies which answer the following critical
questions.
• Does people perform unique patterns of pupil reactions com-
pared to others when seeing light of same wavelength?

• Is the pupil response of the same user hold consistency and
stability under the same wavelength?

• Do visual stimuli with differentwavelengths cause diverse changes
in pupil diameter for one person?

3.2.2 Observations Derived fromCase Studies. To address the above
questions, we conduct experiments in which a total of 52 volunteers
are recruited. During the experiments, volunteers are instructed to
wear the HTC VIVE Pro Eye [70] headset and observe the virtual
scenarios presented on the headset’s screen. The light source within
the scenario varied sequentially across 10 different wavelengths:
400 nm, 450 nm, 475 nm, 500 nm, 525 nm, 550 nm, 570 nm, 600 nm,
630 nm and 700 nm. There is no precise mapping for converting
a wavelength (𝜆) directly to an RGB color; instead, the correlation
between them is more accurately described as an approximate

2Fovea centralis is surrounded by the parafovea belt.

Table 2: Light color and approximate wavelength (𝜆), the

mapping adopted is based on [60].

Color RGB value 𝜆 Color RGB value 𝜆

(131, 0, 181) 400 nm (163, 255, 0) 550 nm
(0, 70, 255) 450 nm (225, 255, 0) 570 nm
(0, 192, 255) 475 nm (255, 190, 0) 600 nm
(0, 255, 146) 500 nm (255, 79, 0) 630 nm
(74, 255, 0) 525 nm (255, 0, 0) 700 nm
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Figure 4: Pupillary response of same users and between dif-

ferent users when 𝜆 = 550 nm.

conversion, as illustrated in Table 2. Each wavelength is maintained
for a duration of 5 seconds, while the Pupil Lab eye tracker [29]
integrated into the headset records the participants’ eye movement
data.3 The sampling process is repeated 20 times per user, resulting
in a total of 1040 samples with each comprising a time-varying
sequence of pupil diameter.
Observation 1: inter-subject pupillary responses show distinctive
patterns at the same stimulus.

Figure 4 presents pupillary response of three users under the
wavelength 𝜆 = 550 nm, with three samples per user. The graph
illustrates significant distinctions in the pupil response patterns
among users, which are sufficient for authentication purposes.
Observation 2: the pupillary response is consistent for the same user
at the same wavelength.

Three pupillary response trials from each user under identical
stimulus are depicted in Figure 4, exhibiting a high degree of sim-
ilarity. Furthermore, based on the original data, we evaluate the
inter-user variability and intra-user consistency by conducting the
Kolmogorov-Smirnov (KS) test for each user. The test returns a
value ranging from 0 to 1, representing the maximum vertical devi-
ation between two sample sets. A higher KS value indicates greater
divergence between the two sample sets. For each user, we ran-
domly select five samples and calculate the average KS value for
all pairwise comparisons to measure the consistency among the
user’s own samples. Meanwhile, we compute the average KS value
between user’s own samples and those from other users to evaluate
their differences.

In Figure 5, the KS values of intra-user groups (with an average
of 0.39) are significantly smaller than those of inter-user groups
(with an average of 0.76). This observation underscores the intra-
user homogeneity and the inter-user divergence under the same
visual stimulus, further validating the feasibility and effectiveness
of light-pupillary response in user authentication.

3Pupil Lab is an optional accessory (i.e., a commercial VR eye tracker) for HTC VIVE
Pro Eye.
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Observation 3: different wavelengths of ambient light trigger diverse
binocular pupillary responses for the same user.

Figure 6 plots the left and right pupil size of a given volunteer
under three distinct wavelengths of light. It highlights variations
in pupillary responses not only across wavelengths but also in
binoculus under the same stimulus. This represents a fine-grained
biometric with the potential for random challenge-response mecha-
nisms. By altering the wavelength combinations within the stimuli,
substantial response credentials can be generated. This reduces the
risk of impersonation attacks through credentials theft.

4 System Design of PipID

Figure 7 shows an overview of PipID, which consists of four mod-
ules. Initially, the Data Collection and Pre-processing module ac-
quires the raw pupil size sequence during both the registration
and authentication phases and implements signal smoothing and
de-noising to mitigate the negative effects of spontaneous blinks
and undesirable noise. Next, the Stimuli Design module calculates
the light wavelength combination that generates the most distinc-
tive pupillary response for each registered user and instructs the
Data Collection and Pre-processing module to collect data for any
user requesting authentication. The de-noised data are then fed
into the Feature Extraction module, where statistical, temporal, and

frequency features are extracted. Finally, the Classification module
trains the classifier based on the registered datasets and performs
authentication. In this section, we will elaborate on the implemen-
tation details of these four modules.

4.1 Data Collection and Pre-processing

As illustrated in Figure 7, during both registration (collecting users’
pupil data with real identity labels) and authentication (when the
user claims an identity whose authenticity is unclear), PipID adopts
standard data collection and pre-processing methods as described
below.

4.1.1 Data Collection. We utilize the HTC VIVE Pro Eye to gather
users’ eye-tracking data. According to the official manufacturer, eye-
tracker of this device has a sampling frequency of 120 Hz, with an
accuracy ranging from 0.5◦ to 1.1◦, and a field of view (FOV) of 110◦.
We design a virtual scenario with dynamically changing colored
light source on Unity4 for the participants, with data recorded
simultaneously through the official SDK.

During the registration phase, this study involves 52 users, with
each user being sampled 20 times. Each round includes 10 distinct
wavelengths of light, and each wavelength lasts for 5 seconds. Con-
sequently, we represent pupil diameter recordings𝑅 = [𝑅𝑢

𝑘,𝑖
], where

𝑘 ∈ [1, 𝑁𝑘 ] represents the 𝑘-th wavelength as described in Table 2
with 𝑁𝑘 = 10, 𝑖 ∈ [1, 𝑁𝑠 ] denotes the sample index with 𝑁𝑠 = 20,
and 𝑢 ∈ [1, 𝑁𝑢 ] is the user index with 𝑁𝑢 = 52. For the authentica-
tion phase, where a user claims identity 𝐽 , to achieve lightweight
authentication, we display only 𝑁𝑤 colors with different wave-
lengths 𝑤 𝐽 = [𝑤1,𝑤2, . . . ,𝑤𝑁𝑤

] provided by the Stimuli Design
module (details can be found in Section 4.2), and the collected data
is represented as 𝐴 = [𝐴𝐽𝑤𝑖

], where 𝑖 ∈ [1, 𝑁𝑤].

4.1.2 Data Pre-processing. To optimize the quality of data and
mitigate the impact of noise, we stick to the following steps to
handle the collected raw data:

(1) Interpolating: Due to the inevitable spontaneous blinks, out-
liers (values < 0)5 exist in the pupil size readings from eye-tracking.
PipID employs linear interpolation to address this issue.

(2) Noise Filtering: The collected recordings 𝑅 = [𝑅𝑢
𝑘,𝑖
] usually

contains noise due to environmental light interference, electromag-
netic emissions from the device, as well as the inherent complexity
of ocular movements and device accuracy limitations. Through
Fourier transformation, we identify that the noise is concentrated
in the high-frequency region. Therefore, we use a low-pass filter
with a cutoff frequency of 50 Hz to remove the noise.

(3) Resampling: As data transmission and hardware synchroniza-
tion are not completely ideal, frame skipping or duplication may
exhibit in the obtained data, resulting in inconsistent frame counts
for each 5-seconds sample 𝑅𝑢

𝑘,𝑖
. To facilitate subsequent process-

ing, we leverage interpolation to resample 𝑅𝑢
𝑘,𝑖

at a rate of 60 Hz ,
ensuring a uniform count of 300 frames per sample6.

4Unity is a development platform for VR apps. For details, see Section 5.1 and Figure 12.
5The eye-tracker is able to detect blinking and outputs a pupil diameter value of −1.
6Despite the official sampling rate being 120 Hz, we have observed issues such as
frame skipping and frame repetition in the timestamps of the output eye-tracking
sequences. The average sampling rate is around 60 Hz in practice.
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Figure 8: Pre-processing of original data.

Figure 8 illustrates the original and the pre-processed pupillary
response signals. Ultimately, during the registration phase, we ob-
tain the pre-processed response traces 𝐼𝑢

𝑘,𝑖
[𝑛] from each 𝑅𝑢

𝑘,𝑖
, which

represents a pupil diameter sequence of length 𝐿 = 𝑓𝑠 ×𝑇 under
the 𝑘-th wavelength, where the resampling rate 𝑓𝑠 is 60 Hz and the
duration 𝑇 is 5 seconds. Similarly, we have pre-process trace 𝐾 𝐽𝑤𝑖

from 𝐴
𝐽
𝑤𝑖

during the authentication phase.

4.2 Stimuli Design

In this subsection, we design customized visual stimuli tailored
to users’ pupillary responses across various wavelengths. Our ob-
jective is to find the best combinations of wavelengths, which is
assumed to elicit the most distinctive eye movement signatures
(i.e., maximal inter-individual heterogeneity while preserving intra-
personal consistency). In addition, we will introduce the generation
of random challenges to defend against replay attack.

4.2.1 User-Specific Light Color Selection. We employ the KS test de-
scribed in Section 3.2.2 to quantify both variability and consistency.
For pre-processed pupil data from registration users, we compute
the KS statistic between their pupillary signals and those of other
users across each wavelength. We average all samples from user 𝑢𝑖
at a given wavelength:

𝐼
𝑢𝑖
𝑘,𝑎𝑣𝑔

[𝑛] = 𝑎𝑣𝑔(𝐼𝑢𝑖
𝑘,1 [𝑛], 𝐼

𝑢𝑖
𝑘,2 [𝑛], ...𝐼

𝑢𝑖
𝑘,𝑁𝑠

[𝑛]), (1)

and similarly, average the samples from another user 𝑢 𝑗 ≠ 𝑢𝑖 at the
same wavelength:

𝐼
𝑢 𝑗

𝑘,𝑎𝑣𝑔
[𝑛] = 𝑎𝑣𝑔(𝐼𝑢 𝑗

𝑘,1 [𝑛], 𝐼
𝑢 𝑗

𝑘,2 [𝑛], ...𝐼
𝑢 𝑗

𝑘,𝑁𝑠
[𝑛]). (2)

The KS test (denoted as 𝐾𝑆 (·, ·)) is calculated between 𝐼𝑢𝑖
𝑘,𝑎𝑣𝑔

[𝑛]
and 𝐼𝑢 𝑗

𝑘,𝑎𝑣𝑔
[𝑛]. This process is repeated for every other user, and the

average of these KS values represents the final KS score for user 𝑢𝑖
as 𝐾𝑆 (𝑢𝑖 , 𝑘) = 1

𝑁𝑢−1
∑
𝑖≠𝑗 𝐾𝑆 (𝐼𝑢𝑖𝑘,𝑎𝑣𝑔 [𝑛], 𝐼

𝑢 𝑗

𝑘,𝑎𝑣𝑔
[𝑛]), signifying the

inter-user difference at the specified 𝑘-th wavelength. PipID could
establish a prior database to store a certain amount of pupil data.
This will mitigate the cold start problem for the initial users of
the system. Whenever a new user joins, PipID collects the user’s
eye-tracking data and performs a KS test on it.

To assess personal consistency, we perform pairwise KS tests
on all samples for each user at each wavelength and average the
results. Finally, we obtain measures of both variability and con-
sistency for each user across different wavelengths. We select the
top 𝑁𝑤 wavelengths with the largest difference between variabil-
ity and consistency as the user-specific stimuli (i.e., wavelength
combination). In this study, unless otherwise specified, 𝑁𝑤 is set
to 4. During the registration phase, we preserve only the user’s
pre-processed data corresponding to the top 𝑁𝑤 wavelengths for

subsequent feature extraction and classifier training. During each
login phase, the user first claims their identity 𝐽 , after which the
corresponding 𝑁𝑤 wavelengths are presented as visual stimuli for
authentication.

4.2.2 Random Challenge Generation. To defend against replay at-
tacks, we further introduce random challenges. After customizing
the most suitable 𝑁𝑤 wavelength for each user, PipID alters the
sequence of light presented to the user. For instance, during one
login attempt, the system presented light wavelengths as [400 nm,
450 nm, 500 nm, 600 nm]; in a subsequent login, the stimuli may
be rearranged to [450 nm, 600 nm, 400 nm, 500 nm]. In the fol-
lowing sections, for a given authentication attempt, we denote the
random challenge 𝑤 𝐽 as [𝑤1,𝑤2, . . . ,𝑤𝑁𝑤

]. We assume that the
adversary in replay attacks possesses samples from the 𝑁𝑤 optimal
wavelengths but does not know their randomized order during a
given login attempt. The performance of this defense approach is
evaluated in Section 5.4.1.

4.3 Feature Extraction

After obtaining the pre-processed data 𝐼𝑢
𝑘,𝑖

[𝑛] or 𝐾 𝐽𝑤𝑖
, we extract

three types of features: statistical features, temporal morphological
features, and frequency-domain features. Taking a sample 𝑖 at a
specific wavelength 𝑘 of user 𝑢 as an example (abbreviated as 𝐼 [𝑛]),
we will introduce the extraction process below in detail.

4.3.1 Statistical and Temporal Features. Statistical features refer to
the descriptions of signal statistical analysis. For 𝐼 [𝑛], we calculate
the average, variance, median, skewness, and kurtosis of the pupil
diameter to constitute its statistical features 𝐹𝑠 . Besides, PipID ex-
tracts temporal features 𝐹𝑡 from 𝐼 [𝑛] to outline the morphology of
light-pupillary response curves, as shown in Figure 9. By introduc-
ing short intervals of darkness between each wavelength, we allow
the subject’s pupil size to approximately recover to baseline before
the next wavelength. As observed in Figure 9, upon exposure to a
specific wavelength, the pupil undergoes an evident constriction
after a response lag, with notable fluctuation from the 1st to 3rd sec-
onds. Therefore, we select the signal segment 𝐶 [𝑛], 𝑛 ∈ [1, 𝑓𝑠 × 2],
from 𝐼 [𝑛] spanning 1st to 3rd seconds. Normalization mechanism
is conducted on it to obtain 𝐶

′
. The 𝑘−th element of 𝐶

′
is:

𝐶
′
[𝑘] = 𝐶 [𝑘] −𝑚𝑖𝑛

𝑚𝑎𝑥 −𝑚𝑖𝑛 . (3)

The normalization value is set with𝑚𝑖𝑛 = 0 and𝑚𝑎𝑥 = 8 based
on the general pupil diameter’s fluctuation range under light influ-
ence. To further improve PipID’s ability, we also propose following
feasible features as a component of 𝐹𝑡 :
• Area under the curve (AUC). This represents the area beneath
the pupillary response curve, calculated by integrating over time.
A larger AUC tends to indicate a higher sensitivity for user to
light stimulus.

• Peak/Valley magnitudes. These refer to the local maxima and
minima in the pupil fluctuations. More acute fluctuations result
in higher peaks and lower valleys. PipID employs a classical
peak detection algorithm to identify peaks and valleys in the
response waveform. To unify the feature vector length, we se-
lect the first 𝑁 peaks and valleys from 𝐼 [𝑛]. If the number of
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Figure 9: Illustration of pupillary response under stimuli

and its temporal features (i.e., normalization, AUC, peak

magnitudes, valley magnitudes, dilation rate, miosis rate,

and polynomial coefficients).

peaks or valleys is less than 𝑁 , we pad with the minimum peak
or maximum valley values. PipID also calculates the average,
median, and variance of the peaks and valleys as supplements
of the Peak/Valley magnitude features (𝑃 , 𝑉 ).

• Dilation/Miosis rates. Dilation (Miosis) rate is defined as the ratio
of pupil dilation (miosis) amplitude to the corresponding time
interval. We determine pupil dilation and miosis by leveraging
the adjacent peaks and valleys identified in the previous step.
Similarly, we select𝑀 dilation/miosis rates to standardize the
feature vector length, denoted as 𝐷𝑟 and𝑀𝑟 .

• Polynomial coefficients. The 𝑘-degree polynomial can be used to
approximate the shape of the pupillary response curve, with its
coefficients 𝑃𝐶 serving as features. We set 𝑘 to 15, as it provides
a good fit to the ground truth.
In summary, we can obtain the temporal feature of PipID as

𝐹𝑡 = [𝐶′, 𝐴𝑈𝐶, 𝑃,𝑉 , 𝐷𝑟,𝑀𝑟, 𝑃𝐶].

4.3.2 Frequency Features. To further observe the distribution of
the pupillary response signal in the frequency domain, we perform
the Short-Time Fourier Transform (STFT) on the 𝐼 [𝑛] with length of
𝐿 = 𝑓𝑠 ×𝑇 . We adopt a sampling rate 𝑓𝑓 𝑓 𝑡 of 60 Hz with a Hanning
window of size 32 to separate the signal into small chunks across
time domain. The overlap step of moving windows is set to 16
and the FFT points number 𝑁𝑓 𝑓 𝑡 is 512. Then, a spectrogram 𝑆 is
generated. Thereafter, PipID truncates the spectrogram below a
cutoff frequency 𝑓𝐴𝐹 , which is set to 5Hz based on the concentration
of amplitude. Subsequently to the cutoff, we get 𝑆𝑝𝑒𝑐 = 𝑆 (: 𝑀𝑠𝑝𝑒𝑐 , :)
with𝑀𝑠𝑝𝑒𝑐 =

𝑓𝐴𝐹 ×𝑁𝑓 𝑓 𝑡

𝑓𝑓 𝑓 𝑡
= 43.

Figures 10(a) and 10(b) demonstrate the spectrograms under
two different light stimuli for two users (the overlap step is set to
30 in the figures). The differences exhibited in the spectrograms
indicate their effectiveness as frequency domain features for user
authentication. We take the average of 𝑆𝑝𝑒𝑐 across the time domain
and generates the frequency domain features 𝐹𝑓 = 𝑆𝑝𝑒𝑐 with a
length of 𝑀𝑠𝑝𝑒𝑐 . Figure 10(c) has validates the differences of the
average and standard deviation of 𝐹𝑓 across wavelengths between
two users. Ultimately, for a sequence of pupillary response signals
𝐼 [𝑛], the extracted features 𝐹 = [𝐹𝑠 , 𝐹𝑡 , 𝐹𝑓 ].

1 2 3 4
Time (s)

0

1

2

3

4

5

Fr
eq

ue
nc

y 
(H

z)

User 1, Wave 400 nm

0

1

2

3

4

1 2 3 4
Time (s)

0

1

2

3

4

5

Fr
eq

ue
nc

y 
(H

z)

User 1, Wave 500 nm

0

1

2

3

4

(a)

1 2 3 4
Time (s)

0

1

2

3

4

5
User 2, Wave 400 nm

0

1

2

3

4

1 2 3 4
Time (s)

0

1

2

3

4

5
User 2, Wave 500 nm

0

1

2

3

4

(b)

1 2 3 4
Time (s)

0

1

2

3

4

5

Fr
eq

ue
nc

y 
(H

z)

User 1, Wave 400 nm

0

1

2

3

4

1 2 3 4
Time (s)

0

1

2

3

4

5

Fr
eq

ue
nc

y 
(H

z)

User 1, Wave 500 nm

0

1

2

3

4

1 2 3 4
Time (s)

0

1

2

3

4

5
User 2, Wave 400 nm

0

1

2

3

4

1 2 3 4
Time (s)

0

1

2

3

4

5
User 2, Wave 500 nm

0

1

2

3

4

0 1 2 3 4 5
Frequency (Hz)

0.00

0.02

0.04

Va
lu

e

Ff, std

User 1
User 2

0 1 2 3 4 5
Frequency (Hz)

0.0

0.2

0.4

0.6

0.8

Va
lu

e

Ff, avg

User 1
User 2

(c)

Figure 10: (a) Cutoff spectrogram of user 1 in 400 nm and 500

nm. (b) Cutoff spectrogram of user 2 in 400 nm and 500 nm.

(c) 𝐹𝑓 ,𝑠𝑡𝑑 and 𝐹𝑓 ,𝑎𝑣𝑔 of user 1 and user 2.

4.3.3 Feature Expanding Based on Left and Right Eye Difference.
The eye tracker embedded in HTC VIVE headset is able to acquire
individual eye movement data separately for the left and right
eyes. Thus, features (𝐹𝑙𝑒 𝑓 𝑡 , 𝐹𝑟𝑖𝑔ℎ𝑡 ) can be extracted from the two
eyes respectively. By taking the average of pupil sizes from both
eyes, we are able to derive a sequence representing the change in
cross-eye pupil diameter, which allows PipID to extract the feature
𝐹𝑐𝑟𝑜𝑠𝑠 . Furthermore, we observe subtle yet significant differences in
pupillary response variations between the left and right eyes of each
person, as stated in Section 3. We generate a sequence representing
the bilateral difference by subtracting the right value from the
left one. Statistical and temporal features from this sequence are
designated as 𝐹𝑑𝑖 𝑓 𝑓 . We will not extract frequency-domain features
from the sequence of differences.

Overall, for a given traces on each wavelength from one user (i.e.,
𝐼𝑘,𝑖 [𝑛]), PipID is able to obtain four features: 𝐹𝑙𝑒 𝑓 𝑡 , 𝐹𝑟𝑖𝑔ℎ𝑡 , 𝐹𝑐𝑟𝑜𝑠𝑠 ,
and 𝐹𝑑𝑖 𝑓 𝑓 . We denote 𝐹𝐼𝑘,𝑖 = [𝐹𝑙𝑒 𝑓 𝑡 , 𝐹𝑟𝑖𝑔ℎ𝑡 , 𝐹𝑐𝑟𝑜𝑠𝑠 , 𝐹𝑑𝑖 𝑓 𝑓 ]. Accord-
ingly, the total samples for one user (𝑁𝑠 recordings for each of 𝑁𝑘
wavelengths), i.e., 𝐼 [𝑛] = [𝐼𝑘,𝑖 [𝑛]]𝑁𝑘×𝑁𝑠

, yields feature samples 𝐹𝐼 :

𝐹𝐼 = [𝐹𝐼𝑘,𝑖 ]𝑁𝑘×𝑁𝑠
, 𝑘 ∈ [1, 𝑁𝑘 ], 𝑖 ∈ [1, 𝑁𝑠 ] . (4)

4.3.4 Features Expanding Based onWavelength Subgroups. For each
user, we have devised a unique combination consisting 𝑁𝑤 = 4
wavelengths as visual stimuli in Section 4.2, and only the features
derived from these wavelengths are utilized for the user’s classifi-
cation training. To achieve high-accuracy authentication, we only
consider a fixed-order wavelength combination for usability. Addi-
tionally, with a heightened focus on security measures, especially in
mitigating the risk of replay attacks, we will integrate randomized
factors into the design of our features.

Authentication Features. To enhance the performance of the
classification model, for the dataset collected during user registra-
tion, we randomly combine the feature samples used for training.
Assuming𝑤 𝐽 = [𝑤1,𝑤2,𝑤3,𝑤4] are the 𝑁𝑤 = 4 (i.e., four) selected
wavelengths for a given user, each time PipID randomly selects one
sample from each wavelength, which can be combined to gener-
ate a new sample 𝐹𝑐 = [𝐹𝐼𝑤1,𝑝

, 𝐹𝐼𝑤2,𝑞
, 𝐹𝐼𝑤3,𝑟

, 𝐹𝐼𝑤4,𝑠
], where 𝑝, 𝑞, 𝑟, 𝑠

are time indexes. For the authentication phase, to comply with
the design goal of lightweight authentication, we do not apply
random combination processing to them. Therefore, the feature
combination that servers as test sample is [𝐹𝐾𝑤1

, 𝐹𝐾𝑤2
, 𝐹𝐾𝑤3

, 𝐹𝐾𝑤4
].
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Figure 11: PipID’s training and authentication processes.

Further, we apply the same process manner for both combina-
tion feature during registration and authentication. As shown in
Figure 11, we take 𝐹𝑐 as an example, each feature sample is di-
vided into

(4
3
)
= 4 subgroups, the 𝑖-th subgroup represents the

feature samples from wavelengths 𝑤 𝐽 [𝑖 mod 4],𝑤 𝐽 [𝑖 + 1 mod 4]
and𝑤 𝐽 [𝑖+2 mod 4], denoted as [𝐹𝑐 (𝑤 𝐽 [𝑖 mod 4]), 𝐹𝑐 (𝑤 𝐽 [𝑖+1 mod
4]), 𝐹𝑐 (𝑤 𝐽 [𝑖 + 2 mod 4])], and we calculate the average and stan-
dard deviation (𝐹𝑎𝑣𝑔, 𝐹𝑠𝑡𝑑 ) across the wavelengths within each
subgroup:

𝐹𝑎𝑣𝑔 [𝑖] =𝑎𝑣𝑔( [𝐹𝑐 (𝑤 𝐽 [𝑖 mod 4]), 𝐹𝑐 (𝑤 𝐽 [𝑖 + 1 mod 4]),

𝐹𝑐 (𝑤 𝐽 [𝑖 + 2 mod 4])]),
(5)

𝐹𝑠𝑡𝑑 [𝑖] =𝑠𝑡𝑑 ( [𝐹𝑐 (𝑤 𝐽 [𝑖 mod 4]), 𝐹𝑐 (𝑤 𝐽 [𝑖 + 1 mod 4]),

𝐹𝑐 (𝑤 𝐽 [𝑖 + 2 mod 4])]).
(6)

We can also following equations 5 and 6 to address subgroups during
authentication. Thus, for the user’s authentication request, our
ultimate feature 𝐹𝑈 = [𝐹𝑈 [𝑖]], 𝑖 ∈ [1, 4] comprises four subgroups,
with each subgroup 𝐹𝑈 [𝑖] = [𝐹𝑈 [𝑖] [𝑛]], 𝑛 ∈ [1, 𝑁𝑓 ] containing
𝑁𝑓 feature samples, with a length of 𝐿𝑓 = 1600 for each sample.

Features to thwart replay attacks.We consider incorporating
randomized factors into the features, specifically, the sequence of
various lights employed in the stimuli. Taking 𝐹𝑐 as an example,
for the 𝑖-th subgroup, we concatenate the samples corresponding
to different wavelengths:

𝐹𝑐𝑜𝑛𝑐𝑎𝑡 [𝑖] =[𝐹𝑐 (𝑤 𝐽 [𝑖 mod 4]), 𝐹𝑐 (𝑤 𝐽 [𝑖 + 1 mod 4]),

𝐹𝑐 (𝑤 𝐽 [𝑖 + 2 mod 4])] .
(7)

4.4 Classification

4.4.1 Overview of Classification Module. The classification module
leverages the extracted features to distinguish between legitimate
and illegal users. The training and authentication process of PipID
are illustrated in Figure 11. Given the relatively small dataset scale
and subtle differences in pupillary response, using Deep Neural
Networks or one-class classifiers tends to result in over-fitting.
Therefore, we employ a binary classification method to train our
network for each user. The training and test sets are independently
divided. The model is fed with two types of explicitly labeled data:
legitimate user’s data and impersonator’s data. Both are the feature
samples under the wavelength combination of current legitimate
user, which is chosen through KS test stated in Section 4.2. The
former are the features extracted from the user’s own pupillary
response, following the steps outlined in Section 4.3. The latter are
randomly selected from the features sets of other users, with an
equal sample number as the legitimate one.

We leverage the Extremely Randomized Trees (Extra-Trees) to
train our classifier. The Extra-Trees builds multiple decision trees
and outputs the class that is the mode of the classes of the individual
trees. It differs from traditional Random Forests in its randomized
attribute selection and split criteria, making it more robust to noise.

4.4.2 Defending Against Basic Impersonation. During the authen-
tication, we utilize the method described in Section 4.3.4 to gen-
erate 𝑁𝑤 = 4 groups from a single trial. For 𝑖-th sub-sample, the
trained model assigns a probability of being classified as legal as its
score (denoted as score𝑖 ). PipID then calculates the product of the
scores across all groups as the final score for the test sample, i.e.,
score =

∏𝑁𝑤

𝑖=1 score𝑖 . When score ≥ 𝑡 , where 𝑡 is a given threshold,
the model considers the sample from the legitimate user.

4.4.3 Defending Against Replay Attack. To further defend against
replay attack, we focus on samples classified as legitimate user.
Features calculated from equation 7 will be utilized to train a new
Extra Trees model. For a specific challenge, the positive samples
are features derived from the current challenge, while the negative
sample set we employ consists of samples corresponding to wave-
length combinations that an attacker might generate (using the
same wavelengths but with different arrangements). For instance, if
a random challenge is wavelengths of [400 nm, 450 nm, 500 nm, 600
nm], the corresponding samples are labeled as positive, while other
samples (e.g., those from [450 nm, 600 nm, 400 nm, 500 nm]) are
labeled as negative. Since these samples can be obtained during the
enrollment phase, for each possible wavelength combination, we
are able to pre-train its classification model offline; in total, there
are 24 possible arrangements, corresponding to 24 mini-models for
replay attack detection. Similar to the process of authentication, for
a test sample, we calculate the final multi-score based on the scores
of each of its subgroups, and only classify it as a positive sample if
the multi-score exceeds a predefined threshold.

5 Evaluation of PipID

In this section, we evaluate the performance of PipID. Due to the
page limit, the evaluations of impact factors and the user study are
presented in the online appendix.

5.1 Experiment Settings

Hardware and software setup. In this study, we adopt the HTC
VIVE Pro Eye headset integrated with Pupil Labs’ eye tracker to
collect users’ eye motion data. The experimental virtual scenes are
implemented on Unity, a platform for VR application development.
We harness relevant APIs from the Eye and Facial Tracking SDK
and the SRanipal SDK to record users’ eye movements scripted in
C#. The VR headset is connected to a computer system equipped
with an Intel Core 14th Generation i7 processor and an NVIDIA
GeForce RTX 4060 Ti graphics card, via a streamer and USB inter-
face. Subsequent data processing and training are performed on
this computer using Python.
Data collection. In the data collection phase, we recruit 52 vol-
unteers comprising of 21 males and 31 females, with ages ranging
from 16 to 29. Each participant is instructed to wear an HTC VIVE
Pro Eye headset and seat comfortably at a designated desk in a lab-
oratory with tranquil atmosphere and mild indoor lighting. Before
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Figure 12: Details of data collection procedure.

data acquisition, an eye-tracking calibration process inherent to
the headset is implemented for each one, ensuring the reliability of
the subsequent eye movement recordings. Then, the participants
are immersed in a virtual scenario with the wavelength of its light
source varies, as shown in Figure 12. They are instructed to relax
and naturally observe the scene, allowing their gaze to wander
freely across the virtual landscape or fixate on any point of interest
within the environment.

The light source within the scenario sequentially transitions
through a predetermined series of wavelengths: 400 nm, 450 nm,
475 nm, 500 nm, 525 nm, 550 nm, 570 nm, 600 nm, 630 nm and 700
nm, each maintains for a duration of 5 seconds. To facilitate pupil
recovery and adaptation to the next wavelength, a brief 0.5-second
interval of complete darkness is interposed between each wave-
length. The variations of light across 10 wavelengths constitutes
a sampling round, generating a sequence of user’s pupil diameter
over time (i.e., sample fragment). A total of 20 sampling rounds are
launched for each participant. To conduct the longitudinal experi-
ment, 10 participants are re-invited to repeat the sampling process
on the 1st, 2nd, 3rd, 7th, and 14th days following their initial sam-
pling. After data collection, we extract features corresponding to
the wavelengths within the user-specific stimuli as shown in Sec-
tion 4.2 and 4.3. Then a total of 200 feature samples are obtained
after feature expanding for each person.
Training procedure. As mentioned in Section 4.4, to achieve user
authentication, we train a binary classifier for each user, utilizing
data with two labels: legitimate one and impersonators. Among
all the datasets, 80% is allocated for training purposes, while the
remaining 20% is reserved for testing.
Evaluation metrics. In this study, we use accuracy, false accep-
tance rate (FAR), false rejection rate (FRR) and F1-score as metrics
to evaluate the performance of PipID. The accuracy is defined as
the proportion of correct predictions for both genuine and impostor
attempts. FAR measures the proportion of impostor access attempts
that are incorrectly accepted by the system, while FRR measures
the proportion of the genuine one being incorrectly rejected. The
F1-score is a harmonic mean of precision and recall.

5.2 Overall Performance of PipID

Overall accuracy. PipID leverages Extra Trees to train classifiers
for all 52 users. The testing results achieve an average accuracy of
98.65% and F1-score of 98.61%. Notably, 41 models (78.85% of the
total) reaches the peak accuracy of 100%. Specifically, for the entire
10400 samples, the overall FAR and FRR is 0.77% (i.e., 40 samples
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Figure 13: FAR, FRR and EER of PipID.
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Figure 14: Impact of stimuli types and duration on PipID.

being falsely accepted out of 5200) and 1.92% (i.e., 100 samples are
falsely rejected out of 5200) respectively.

To visualize how different thresholds affect the classifier’s per-
formance, the changes of FAR and FRR under various thresholds
are illustrated in Figure 13. The results of FAR 0.77% and FRR 1.92%
are obtained when the threshold is set to 0.02. The EER (Equal Error
Rate) is represented by the intersection point of the two curves,
which achieves the lowest (i.e., 1.92%) at a threshold of 0.015.
Time overhead.We present the time overhead of PipID, including
the authentication time (i.e., the time spent collecting user data
during authentication), the enrollment time (i.e., the time spent on
training), and the authentication response time (i.e., the time PipID
takes to process the data and make a decision).

(1) Authentication time. Figure 14 shows the classification ac-
curacy of PipID when the stimuli consist of varying numbers of
colored light, each with different sample durations. Specifically, we
test scenarios with 4, 3, and 2 colors in stimuli, coupled with sample
duration of 5s, 4s, 3s, 2s, and 1s. The time reduction is achieved
by extracting the first few seconds from the original sequences.
Generally, an increase in both the number of colors and the sample
duration leads to an enhancement in model accuracy.

Fortunately, shortening duration time has not make a consider-
able difference to PipID’s performance. For instance, with 4 colors
and a 3-second duration, PipID still achieves an accuracy of 98.55%.
Besides, a duration time of 2 seconds yields the highest accuracy
rate of 97.88% among scenarios with 3 colors in stimuli. This may
be attributed to the fact that the pupillary response is most sig-
nificant within the first 2 to 3 seconds when exposed to a specific
wavelength of light, during which time sufficient identity-related
information can be obtained. On the other hand, when decreasing
the number of colors in stimuli from 4 to 3, the accuracy remains
relatively stable as well, which generally hovers above 97%. These
observations underscore the potential to compress the stimuli du-
ration of PipID, thereby facilitating a shorter authentication time
for better usability.

We compare PipID with other prevalent biometric user authenti-
cation methods in terms of authentication time and system perfor-
mance. We consider three-color visual stimuli, each lasting for 2
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Table 3: Comparison of Authentication Time and Perfor-

mance Between PipID and Existing Biometrics User Authen-

tication Methods.

Methods FAR(%) FRR(%) Auth Time(s) Biometrics

Blinkey [81] 4.00 4.00 7.3 - 11.7 Blink, Pupil Size
BioMove [47] 0.0032 1.30 ≈20 Body, Eye Motion
Reflexive [61] 6.30 6.30 ≤10 Saccade

OcuLock(EOG) [37] 3.55 3.55 ≤10 EOG
Iris scan [6] 6.35 6.35 ≤1 Iris Image

SkullConduct [55] 6.90 6.90 ≤23 Bone Sound
GaitLock [57] 2.90 2.90 ≤5 Gait Pattern
PipID (ours) 2.69 1.54 ≤7.5 Pupil Size

Table 4: Impact of numbers of original training samples on

PipID.

𝑁𝑡 Accuracy (%) FAR (%) FRR (%) F1-score (%)

10 98.65 0.77 1.92 98.61
9 97.81 0.87 3.49 97.68
8 97.68 0.80 3.85 97.58
7 97.71 1.03 3.55 97.59
6 97.66 1.92 2.75 97.65
5 97.63 2.56 2.18 97.69

seconds, as a good balance between security and usability. With this
setup, the FAR and FRR are 2.69% and 1.54%, respectively, with an
authentication time of 7.5 seconds (including a 0.5 s black interval
before each light). As shown in Table 3, PipID outperforms most of
the methods in both authentication time and accuracy. While some
works offer faster authentication times, such as Iris scan [6] and
GaitLock [57], the former is susceptible to replay attacks while the
latter is vulnerable to shoulder-surfing attacks and physically de-
manding. Therefore, when considering both security and usability
comprehensively, PipID demonstrates significant advantages.

(2) Enrollment time. To collect sufficient training and testing
samples, we sampled from volunteers for 20 rounds (approximately
18 minutes) in our data collection process, which is not practical
considering enrollment effort. To reduce the enrollment time, we
conduct tests to evaluate themodel performancewith different num-
bers of original training samples (denoted as 𝑁𝑡 ). The results are
illustrated in Table 4. We keep the training-testing dataset propor-
tions consistent (training set proportion 𝑃𝑡 = 0.8), as corresponding
numbers of training samples can be expanded through random com-
bination from original training set as stated in Section 4.3.3. The
optimal accuracy (98.65%) and F1-score (98.61%) are achieved when
𝑁𝑡 = 10.

As the number of training samples decreases, there is a subtle
but not significant decline in authentication accuracy. Even with
only 5 original training samples, the accuracy remains at 97.64%,
suggesting that the number of sampling rounds during the enroll-
ment phase can be reduced to approximately 5 rounds. Additionally,
considering the analysis of authentication time, the duration of each
wavelength segment can also be shortened. This implies that the
enrollment time can be reduced to 10 × (2 + 0.5) × 5 = 125 seconds
(i.e., approximately 2 minutes).

(3) Authentication response. We also evaluate the authentication
response speed of PipID. For each authentication attempt, the aver-
age time overhead 𝑇𝑜𝑣𝑒𝑟𝑎𝑙𝑙 of PipID covers the data pre-processing

Table 5: Performance of PipID on different groups.

Groups (headcount) Accuracy (%) FAR (%) FRR (%)

Male (21) 97.86 0.48 3.81
Female (31) 98.55 0.64 2.26

Non-myopia (13) 98.46 2.31 0.77
Uncorrected Myopia (12) 99.17 0.83 0.83
Wearing Spectacles (27) 97.22 2.96 2.59
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Figure 15: Long-term Performance of PipID.

time 𝑇𝑝 = 0.005 s, feature extraction time 𝑇𝑓 = 0.226 s, and classi-
fication time 𝑇𝑐 = 0.289 s. Thus, the overall time 𝑇𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 0.52 s,
which is accessible.
Performance on different groups. We collect pupillary data
from 52 volunteers, comprising 21 males and 31 females. Based on
their vision status, 13 individuals are non-myopic, and among the
39 myopic subjects, 27 wear spectacles under headsets, while the
remaining 12 not. We test the performance of PipID across these
subgroups, as shown in Table 5. The average accuracy achieved for
the male is 97.86%, and 98.55% for female. For the individuals of non-
myopic, myopic without spectacles, and myopic with spectacles,
the average accuracy are 98.46%, 99.17%, and 97.22%, respectively.
The accuracy of the group wearing spectacles may be affected by
lens refraction.

5.3 Longitudinal Study

To investigate the long-term performance of PipID, we invite 10
volunteers back for a multi-session sampling protocol, conducted
on the 1st, 2nd, 3rd, 7th, and 14th days following their initial exper-
iment, with 10 rounds of sampling per session for each volunteer.
As a biometric, the response of pupillary diameter under differ-
ent lights will exhibits variability over time, leading to a decline
in authentication performance [27, 34]. To mitigate the long-term
effects of biometric degradation, we implement a method where
new samples are periodically added to the training datasets. Then,
the classification model is retrained to incorporate these new data.

Figure 15 showcases the results of the longitudinal experiment.
For comparison, we also test the authentication performance with-
out addressing long-term degradation over the same time span,
where the accuracy continuously decline over time. In contrast,
with periodic updates of the training dataset, PipID maintains a
relatively stable authentication accuracy. Specifically, on the 7th
and 14th day, the accuracies are 98% and 91% respectively. This
demonstrates that PipID is effective in counteracting the temporal
variations in pupillary response. We acknowledge the limitations
of the current approaches and will discuss the countermeasures in
Section 6.
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Table 6: The impact of the number of correctly guessed po-

sitions by the attacker on the success rate of replay attack.

We have excluded scenarios where the attacker can exactly

guess the correct challenge.

Number of matching positions 2 1 0
Expected occurrences (out of 23) 6 8 9
Attack success rate (%) 3.01 2.82 1.61

5.4 Robustness Against Adaptive Attacks

5.4.1 Replay Attacks. We conduct experiments to evaluate the re-
silience of PipID against replay attacks, where adversaries may
attempt to access the VR device by exploiting pupillary responses
generated from previously used visual stimuli of the user. For each
user, we select 𝑁𝑤 = 4 wavelengths as stated in Section 4.2. We
assume that the attacker has obtained the user’s pupillary responses
from these 4 wavelengths but is unaware of light order in each ran-
dom challenge. For a login attempt, the attacker randomly guesses
the current wavelength permutation and sends the corresponding
response to the model (10 samples are selected as test sets for each
guessed permutation). We evaluate the system’s effectiveness in
defending against replay attacks under scenarios where 0, 1 or 2
positions of wavelength in the attacker’s guessed stimuli match the
actual stimuli.

The results shown in Table 6 indicate an average attack success
rate (i.e., FAR) of 3.01%, 2.82%, and 1.61%, respectively, when the
guessed challenge by the attacker differs from the current challenge
in 2, 3, and 4 positions. There are a total of 4! = 24 permutations
for 4 wavelengths and 23 permutations that differ from the current
challenge. Among these, the number of permutations that differ
from the current challenge in 2, 3, and 4 positions are 6, 8, and
9, respectively. Therefore, excluding scenarios where the attacker
perfectly guesses the challenge, we can calculate the weighted
average replay attack success rate (ASR) as 6

23 × 3.01% + 8
23 ×

2.82% + 9
23 × 1.61% = 2.40%. When considering the correct guesses

by the attacker, we regard the true accept rate (TAR) of PipID in
Section 5.2 as the ASR, which is 98.08%. Based on this, the overall
ASR is recalculated as 23

24 × 2.40% + 1
24 × 98.08% = 6.39%, indicating

that PipID still achieves a protection rate of 93.61%. We discuss the
limitations of PipID when defending against replay attacks and
propose potential countermeasures in Section 6.

5.4.2 Open-World Attacks. In above-mentioned experiments, all
pupillary information about impersonators is recorded in the known
dataset and potentially used for model training. However, in an
open-world scenario, there may be external attackers endeavoring
to masquerade as legitimate users. To evaluate the model’s per-
formance in an open-world scenario, we divide 52 users into 35
known users and 17 foreign users at a ratio of 2:1. For each of the
known users, an Extra Trees model is trained using our proposed
method. We then collect test samples from both known and foreign
users. Each test sample is run through all models of the known
users. We consider a test sample to be originating from a specific
user only if it yields substantially superior results on its own model
in comparison to other models. Conversely, if the results are rela-
tively indistinguishable across all models, the sample is presumed

to originate from an impersonator who is not part of the known
dataset.

We denote score𝑚 as the final classification score of a sample
obtained by the model of user𝑚, as detailed in Section 4.4. In a close-
world scenario, if score𝑚 exceeds a given threshold, the sample is
recognized as originated from user𝑚. In the open-world scenario, if
a test sample claims to belong to user 𝑖 , we calculate the confidence
parameter:

𝑐𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒 =
score𝑖 − 1

𝑀

∑𝑀
𝑚=1 score𝑚

score𝑖
. (8)

For test samples with score𝑚 ≥ 𝑡 and 𝑐𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒 > 0.5, we con-
sider them as belonging to user 𝑖; otherwise, they are deemed as
illegal users. The final results show that in the open-world scenario,
the model achieve an average accuracy of 97.22%, with a FAR of
3.12% and a FRR of 2.08%. When only considering test samples
from foreign users, the probability of them being misclassified as a
known legitimate user is 2.09%.

5.4.3 Shoulder-surfing Attacks. Since VR headsets fully cover the
eyes, capturing eye movement is challenging for external observers.
Besides, the visual stimuli used for authentication are only displayed
on the virtual screen of the VR device for the user. No valid eye-
tracking information is accessible to external attackers.

6 Limitations and Discussion

In this section, we discuss the limitations of PipID and identify
potential countermeasures for further improving its performance.
Due to the page limit, several discussions are presented in the online
appendix.
Advanced adaptive attacks bypassing PipID. Regarding the
three adaptive attacks with stronger assumptions discussed in Sec-
tion 3, we analyze their feasibility to compromise PipID. For the
first adaptive attack where the adversary is aware of the random-
ized stimuli, PipID would not be effective. However, implementing
such an attack is highly complex. Given that VR headsets provide
full coverage, it is extremely challenging for attackers to obtain
the light stimuli through external observation. On the other hand,
accessing the information displayed on virtual screens requires
special permissions. Consequently, PipID can maintain highly ro-
bust performance in practice. Then, considering the second type
of attack, in which the adversary gains system-level operational
permissions, it would effectively neutralize all challenge-response
authentication mechanisms. Nevertheless, VR platforms typically
have controlled environments with restricted access to system-level
resources. Therefore, launching an attack at the system level is con-
sidered a highly improbable assumption. Finally, regarding the third
type of attack, where the attacker attempts to mimic another per-
son’s pupillary response patterns, studies [43] have shown that the
pupillary light reflex is extremely difficult to replicate, even with
conscious effort and extensive training. Therefore, such imitation
is highly impractical, especially without deep biometric knowledge
or precise control.
Replay attack defense limitations. Our defense strategy may
prove ineffective if an attacker manages to determine the correct
sequence of lights. To address this, a promising future optimization
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would involve expanding the security space of the challenge, for in-
stance, by randomly varying the duration of each light, thus making
the attacker’s brute-force search approach futile. A more resilient
defensive measure would be to integrate liveness detection directly
into the system, ensuring that it can verify whether the current data
is sourced from a genuine individual rather than outdated response
data.
Longitudinal performance degradation. To mitigate long-term
degradation in biometric features, we periodically add new samples
to retrain the classification model (i.e., Extra Trees) in response to
concept drift (e.g., dynamic changes in pupillary responses). How-
ever, due to the model’s fixed parameters, its accuracy may still
degrade if the distribution of new data diverges significantly from
the original training set. To better accommodate evolving pupil-
lary patterns, future work may explore adaptive learning (AL) and
incremental learning (IL). AL supports real-time updates via on-
line optimization, while IL preserves historical knowledge through
continual learning strategies. We leave the exploration of a hybrid
AL-IL framework that balances new and historical data as future
work to enhance the system’s robustness to long-term variability.
The impact of physiological impairments. According to medi-
cal literature [1, 8, 17, 25, 28, 38, 46], physiological impairments such
as alcohol, prescription drugs or fatigue do have an impact on pupil
diameter. Alcohol-induced central nervous system paralysis relaxes
the pupillary sphincter muscle, resulting in abnormally enlarged
pupil diameter [8, 25, 46], especially under low-light conditions.
Moreover, larger quantities of alcohol consumption tend to result
in more pronounced pupil dilation. Similarly, certain medications,
particularly stimulants and antidepressants that affect the parasym-
pathetic or sympathetic nervous systems, can cause dilated pupils
[1, 17, 28]. Besides, [38] has shown that during periods of fatigue,
pupil diameter exhibits a tendency to decrease as the mental load on
the nervous system intensifies. Thus, we consider PipID applicable
to users in a normal state both mentally and physically. Since VR
devices are not as easily accessible for use as mobile phones, most
users are unlikely in situations including heavy alcohol consump-
tion or excessive fatigue.

7 Related Work

Wavelength of light affects pupil size.Many previous works [11,
18, 26] have shown that the blue light stimulation produces a larger
pupil constriction amplitude compared with red light stimulation
at all intensities. Young and Kimura [77] further indicate that high-
intensity blue light leads to more sustained pupillary contraction
than photopically equivalent red light. Ishikawa et al. [23] proves
that the initial rate of pupil constriction induced by blue light is
notably higher. Kawasaki and Kardon [11, 26] suggest that this
consistent difference in amplitude is likely due to the added input
from intrinsic activation that occurs when only blue light is used.
Besides, [33] systematically investigates pupil response amplitude,
latency, and constriction speed under single light stimuli of four
distinct wavelengths, reporting the greatest amplitude and shortest
latencywithwhite and green light. Furthermore, [5] offers a detailed
assessment of the pupillary light reflex elicited by purple, blue,
and red monochromatic stimuli (administered individually or in

combination for 5 minutes), demonstrating notable variations in
constriction speed and magnitude across different spectral ranges.
Eye motion based authentication. Current research on eye
motion-based authentication such as [49] and [47] instruct users
to perform a series of controlled body movements (e.g., grasping,
typing) while monitoring their unique head, hand, and eye move-
ment patterns in VR environments. Besides, certain interactive
stimuli (e.g., images, sounds, videos) can also trigger reflexive eye
movements [13, 53, 61, 82]. Among them, [82] utilizes users’ pupil-
lary responses upon hearing several audio clips to achieve user
authentication in VR devices. The approaches in [13, 53, 61] au-
thenticate users by recording their gaze patterns on moving targets
by specialized eye-tracker. Notably, Sluganovic et al. [61] employ
a challenge-response paradigm, where the stimulus is a red dot
changing positions on a dark screen, and the response is the re-
flexive saccade. These task-driven authentication methods require
active user engagement through the act of focusing on dynamic tar-
gets. In contrast, Yano et al. [75] propose an authentication method
based on the pupillary light reflex, which combines iris patterns
and pupil features captured by a professional eye tracker under low
or non-visible light conditions. Similarly, [74] chooses the light in-
tensity as visual stimulus, and concludes that better authentication
performance could only be achieved under moderate intensity.

Additionally, Sitzmann et al. [59] demonstrate a universal find-
ing that 70% of people’s attention is focused on the 20% “hotspot”
regions of an image, making the distribution of areas of interest a
potential feature. Several studies have integrated knowledge-based
methods with biometrics. For instance, [81] enables users to select
a blinking rhythm as a password and combines the pupil diame-
ter changes during blinking intervals for authentication. What’s
more, as proposed by [64], different task-driven scenarios lead to
distinct eye movement patterns, which paves the way for continu-
ous authentication by employing eye-movement behaviors during
daily tasks. Continuous authentication can constantly detect users’
identities while they are using the system, without interfering with
their normal work. [79] once attempted to implement continuous
authentication in VR environments, but the implicit stimuli remain
a moving target that users need to be concerned about. In order to
select biometric features that are as unrelated to specific triggers
as possible, Holland et al. [19, 20] investigate users’ eye movement
behavior during reading tasks and Eberz et al. [14] test the impact
of task familiarity on eye movement and feature stability. Eberz
et al. [12] address three challenges in practical eye movement au-
thentication, including the dependency of eye movements on tasks,
indicating that achieving the cross-task eye movement authentica-
tion requires significant effort.

8 Conclusion

In this study, we propose PipID, a seamless and robust VR user
authentication system by employing the unique pupillary diameter
responses under various light stimuli. We theoretically analyze and
experimentally validate the potential of light-pupillary response as
a novel biometric for authentication. Moreover, the incorporation
of inter-ocular differences as a novel feature enriches our feature
set. PipID is tested on dataset including 52 subjects and achieve
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an average accuracy of 98.65%, demonstrating its effectiveness in
differentiating legitimate users from impersonators.
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