
LATTE: Layered Attestation for Portable Enclaved Applications

Haoxuan Xu∗, Jia Xiang∗, Zhen Huang, Guoxing Chen†, Yan Meng, Haojin Zhu
Shanghai Jiao Tong University, China

{SJTUxhx20010613, jiaxcn99, xmhuangzhen, guoxingchen, yan meng, zhu-hj}@sjtu.edu.cn

Abstract—Trusted Execution Environment (TEE) has be-
come increasingly popular in privacy-protected cloud com-
puting, and its rapid development has led to the availability
of various heterogeneous TEE platforms on cloud servers.
To facilitate portable TEE applications on heterogeneous
TEE platforms, portable languages or intermediate rep-
resentations (IRs) with platform-dependent TEE runtimes
are adopted. However, existing remote attestation solutions
for portable TEE applications follow a nested attestation
pattern, i.e., attesting only the TEE runtime and relying
on the TEE runtime to measure the loaded portable ap-
plication, leading to potential security issues. On the other
hand, directly packing the TEE runtime and the portable
application into an enclave for secure attestation undermines
the portability of the portable TEE applications.

In this paper, we introduce the concept of portable identi-
ties to identify portable TEE applications, and propose a lay-
ered attestation framework, LATTE, achieving both security
and portability in attesting portable TEE applications. We
provide a prototype implementation of LATTE to validate its
practicality, with WebAssembly as the portable IR, and Intel
SGX and RISC-V Penglai as the exemplar heterogeneous
TEEs. The evaluation demonstrates that LATTE introduces
minimal performance overhead compared with the nested
attestation pattern.

1. Introduction

With the growing emphasis on privacy protection and
the popularity of cloud computing, numerous works have
proposed the applications of trusted execution environ-
ments (TEEs) in diverse cloud scenarios to preserve pri-
vacy [1], [2], [3], [4], [5], [6], [7]. TEE is a secure
area (usually called enclave) within a CPU to protect
the confidentiality and integrity of code and data loaded
inside. Prominent examples include Intel SGX [8], Intel
TDX [9], AMD SEV [10] and ARM CCA [11]. Recently,
various RISC-V based TEEs have been developed, such
as Penglai [12] and Keystone [13].

The rapid development of heterogeneous TEEs has
spurred the demand for portable TEE applications [14],
[15], [16], [17]. Particularly, portable TEE applications
are developed using portable languages or recompiled to
portable Intermediate Representations (IRs), and then ex-
ecuted by platform-dependent TEE runtimes on different
TEE platforms. For example, WebAssembly Micro Run-
time (WAMR) [16] selects WebAssembly (WASM) [18] as
the portable IR and implements a lightweight standalone

∗Equal contribution.
†Corresponding author.

Cloud
Attestation
&Model
Distribution

Edge

Intel SGX

Fine-tune

AMD SEV

Fine-tune

Intel TDX

Fine-tune

Intel SGX

RISC-V Penglai

Arm TrustZone

Figure 1: An example of securely deploying AI models
using TEEs across heterogeneous devices.

WASM runtime that currently supports Intel SGX. Sim-
ilarly, Enarx [17] provides WASM runtimes supporting
both Intel SGX and AMD SEV.

This method enables seamless deployment of the same
code (referred to as portable payload throughout this pa-
per) across diverse heterogeneous TEE platforms, opening
up many potential application scenarios. For instance, with
the emergence of diverse heterogeneous TEE platforms
on cloud servers, the concept of confidential serverless
computing has been proposed and widely studied [19],
[20], [21], [22]. This approach not only enables developers
to disregard the complex specifications of TEEs, but also
allows cloud providers to enhance server utilization based
on availability. Furthermore, it supports the execution of
uniform privacy-preserving applications across distributed
or decentralized devices of diverse architectures. An illus-
trative example, as shown in Fig. 1, is the use of TEEs
in securely deploying AI models: a user may wish to
fine-tune a model using her own private data - such as
a voice assistant - potentially on cloud servers equipped
with TEEs and optional confidential GPU support. Once
fine-tuned, the model can be distributed across her var-
ious devices (e.g. smart speaker, robots) for inference,
which may lack significant computing power. Since both
the cloud servers and the devices might use different
architectures, the portable payload deployment method
ensures that the fine-tuning and inference code need to
be implemented once and can be executed with the TEE
runtime of different architectures.

However, it is challenging to achieve both strong
security and portability in authenticating portable TEE
applications via existing remote attestation solutions (de-
tailed in Sec. 3). Remote attestation is a mechanism that
empowers one entity, denoted as the verifier, to verify
the trustworthiness of the underlying hardware of a com-
municating enclave, denoted as the attester, and obtain
the attester’s identity. One major challenge in authenticat-
ing portable TEE applications is to securely obtain the
portable payload’s identity (which should be platform-

339

2025 10th IEEE European Symposium on Security and Privacy (EuroS&P)

© 2025, Haoxuan Xu. Under license to IEEE.
DOI 10.1109/EuroSP63326.2025.00028

20
25

 IE
EE

 1
0t

h
Eu

ro
pe

an
 S

ym
po

si
um

 o
n

Se
cu

rit
y

an
d

Pr
iv

ac
y

(E
ur

oS
&

P)
 |

97
9-

8-
33

15
-9

49
3-

0/
25

/$
31

.0
0

©
20

25
 IE

EE
 |

D
O

I:
10

.1
10

9/
Eu

ro
SP

63
32

6.
20

25
.0

00
28

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 01,2025 at 06:18:50 UTC from IEEE Xplore. Restrictions apply.

independent), given that the attester enclave in typical
remote attestation is commonly identified by its mea-
surement, i.e., the cryptographic hash (using platform-
dependent hashing algorithms) of its initial code and data
including platform-dependent TEE runtimes. To tackle
this problem, software-based nested attestation schemes
have been introduced [23], [22], [24], [25]. Specifically,
the attester enclave is firstly launched with only a vanilla
TEE runtime. The verifier then attests the trustworthiness
of the TEE runtime, and relies on the attested runtime
to load the portable payload and calculate its hash. As
long as different TEE runtimes use the same cryptographic
hashing algorithm for the portable payload, the resulting
hash values become portable across all these heteroge-
neous TEE platforms.

Nevertheless, such a nested attestation process has
security issues when the isolation between the runtime
and the payload is not securely enforced (detailed in
Sec. 3.1): when an adversary could compose a malicious
payload that could compromise the whole runtime and
take control of it, the compromised runtime could im-
personate a benign runtime and successfully complete the
attestation process since the measurement of the runtime is
fixed when it is launched, and matches the known-good
measurement of a benign runtime. A recent CVE [26]
reported a bug in a popular WASM runtime that could
be abused to grant unintended read and write access to
the payload even when software fault injection (SFI), a
technique for isolating the runtime and its payload, is in
place. As a result, taking the private AI model deployment
in Fig. 1 as an example, a TEE runtime compromised by
a malicious payload can be abused by the adversary to
steal the private model.

The security issue of nested attestation might be ad-
dressed by hardcoding the portable payload into the initial
data of the attester enclave along with the TEE runtime
and enforcing the TEE runtime to load only the hard-
coded payload, so that the measurement binds with the
hardcoded portable payload. However, this undermines
the portability of the TEE applications, since platform-
dependent information such as the binding between the
platform-dependent measurement and the portable pay-
load might be integrated into the portable payload for the
verification. For example, considering the portable TEE
application PA to fine-tune a private model with sensitive
data and the portable TEE application PB that receives
the model for inference, for PA to attest PB’s identity
to send the private model, measurements of potential
heterogeneous TEE runtimes with hardcoded PB need to
be pre-encoded into PA. This method faces a hurdle when
any runtime undergoes an update, as it mandates a corre-
sponding update to the payload to align with the updated
measurements (detailed in Sec. 3.2). Such a requirement
deviates from the initial goal of facilitating portable de-
velopment, revealing a deep-seated issue stemming from
an inadequate decoupling between the runtime and the
payload development. Moreover, when the user needs to
update the inference code, the fine-tuning enclave must
include measurements of all enclaves for that algorithm
across various platforms, which is cumbersome.

In this paper, we introduce the concept of portable
identity, i.e., the hash of the payload, and propose LATTE,
a layered attestation framework devised to ensure both se-

curity and genuine portability throughout the entire lifecy-
cle of portable TEE application development and deploy-
ment. In particular, this is facilitated with three key tech-
niques: restricted payload loading, identity-measurement
binding, and layered reference-value derivation. Firstly,
restricted payload loading allows for only loading a pay-
load whose portable identity matches a reference value
hardcoded into a TEE runtime, so that the integrity of the
expected payload can be reflected by the measurement of
the launched enclave. Secondly, the identity-measurement
binding permits the verification of the binding between a
portable identity and a measurement. Lastly, the layered
reference-value derivation enables the separation of the
attestation process into two layers, one for verifying the
underlying runtime and one for verifying the portable
payload. This layering decouples components, enabling
updates to one (e.g., the runtime) without requiring up-
dates to the other (e.g., the portable payload), aside from
lightweight rebuilds of affected enclaves, thereby address-
ing the aforementioned portability issue.

We provide a prototype implementation of LATTE
by adopting WASM as the portable IR, WAMR as the
TEE runtime, and Intel SGX and RISC-V Penglai are
demonstrated as examples of heterogeneous TEEs with
different ISAs (i.e., x86 and RISC-V, respectively).

In sum, the main contributions of this paper are:
• It proposes LATTE, a novel solution to address the

security and portability issues in attesting portable TEE
applications.

• It presents key techniques to realize layered attesta-
tion: restricted payload loading, identity-measurement
binding, and layered reference-value derivation.

• It implements and evaluates a prototype of LATTE with
WASM as the portable IR, and Intel SGX and Penglai
as the exemplar heterogeneous TEEs. The prototype
implementation and evaluation are available at https:
//github.com/Jiax-cn/latte.

Ethics Considerations. Our research poses no foreseeable
harm to individuals, deployed systems, or stakeholders,
and IRB consultation was not necessary for this work.

2. Background

2.1. Trusted Execution Environment

Trusted Execution Environment (TEE). A Trusted Ex-
ecution Environment (TEE) on a CPU is a secure and
isolated area to protect the confidentiality and integrity of
the code and data within the area from malicious operating
systems. To improve the security of data and code in ap-
plications, there are many TEEs implemented by different
ISAs, like Intel Software Guard Extensions (SGX) [8],
AMD Secure Encrypted Virtualization (SEV) [10], ARM
TrustZone, Keystone [13] and Penglai [12] in RISC-V.

Intel Software Guard Extensions (SGX). SGX [8] is
a shielded execution environment on an Intel processor.
On an Intel SGX platform, a specified memory region,
called Processor Reserved Memory (PRM), is reserved
for enclave-only memory access. The data and code in
the enclave are stored in the Enclave Page Cache (EPC)
which is held by the PRM [27].

340

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 01,2025 at 06:18:50 UTC from IEEE Xplore. Restrictions apply.

Penglai. Penglai [12] is a RISC-V TEE system that com-
prises three projects designed for various scenarios. One
of these projects, Penglai-TVM, is a pure software enclave
design version that supports fine-grained isolation between
untrusted hosts and enclaves. Penglai-TVM consists of
three key submodules: the Linux kernel, Software Devel-
opment Kit (SDK) and RISC-V Open Source Supervisor
Binary Interface (OpenSBI). The Linux kernel supports
guard page table by utilizing RISC-V Trap Virtual Mem-
ory (TVM), while the SDK includes the host and enclave
library and enclave driver. Penglai OpenSBI includes the
secure monitor responsible for enclave management and
maintaining security guarantees. Additionally, Penglai of-
fers QEMU support [28] for enclave application execution
on architectures other than RISC-V.

Remote Attestation. Remote attestation is a significant
component of TEEs that relies on cryptographic signatures
and endorsement certificates to establish trust between
attesters and verifiers. In this process, an attester pro-
vides attestation evidence to a verifier, which undergoes
two sequential verification phases: (1) verifying that the
evidence originates from trusted hardware by validating
the cryptographic signature produced by the attestation
key, and (2) comparing the measurement in the evidence
against pre-established reference values (e.g., known-good
measurements) to confirm trustworthiness. In the case of
Intel SGX, remote attestation evidence needs to be veri-
fied by the Intel Attestation Service (IAS) [29], allowing
verifiers to obtain the information about the attester’s
hardware platform and software environment.

Measurement in Intel SGX. Intel SGX uses SHA-256, a
Secure Hash Algorithm(SHA) to generate 256-bit digests.
In Intel SGX, the measurement is calculated as enclave
pages are loaded one by one during the enclave creating.

Measurement in Penglai. Penglai uses ShangMi 3
(SM3) [30], a Chinese National Standard cryptographic
hash function, for enclave measurement calculation. SM3
has been recognized by the ISO/IEC international stan-
dard [31] and is considered similar to SHA-256 in both
structure and security [32]. The enclave measurement is
generated by a secure monitor which traverses the enclave
memory from the lowest address to the highest address.

Reference Values. A reference value [33] is a pre-
established value provided to the verifier to determine
whether a received measurement is trustworthy. Reference
values can also be called “known-good values” or “golden
measurements”. In this paper, a reference measurement is
short for the reference value of a measurement, and simi-
larly reference portable identity is short for the reference
value of a portable identity.

MAGE. MAGE [34] enables a group of enclaves to mutu-
ally attest each other without relying on a trusted third
party to provide reference measurements. The method
leverages the sequential nature of cryptographic hash cal-
culations in existing TEEs. Specifically, the hash compu-
tation process involves initializing an intermediate hash
state, updating it sequentially with each block of enclave
content, and finalizing the state to produce the final hash
value (a detailed explanation of this property is provided in
Appendix A). Importantly, the final hash value can be de-
rived from the intermediate hash states and the remaining

blocks to be processed. To facilitate this, MAGE introduces
a shared common component among a group of trusted
enclaves. This component stores the intermediate hash
states of each enclave, which reflect their respective con-
tents excluding the shared component itself. By retrieving
the intermediate hash state of another enclave from the
common component and updating it with the remaining
enclave content (i.e., the shared component), each enclave
can independently derive the reference measurements of
its peers. This eliminates the need for a trusted third party
while ensuring secure mutual attestation.

The idea of leveraging the sequential nature of cryp-
tographic hash calculations for reference measurement
derivation also inspires the design of LATTE.

2.2. Portable Programming

Portable Programming Languages with Runtimes. A
portable programming language with a runtime (e.g., a
virtual machine or interpreter) provides an execution envi-
ronment that abstracts away platform-specific details. Ap-
plications developed with such languages can run on any
system with the corresponding runtime, allowing develop-
ers to focus on the core logic of applications. Examples
include Java, which relies on the Java Virtual Machine,
and Python, which executes code via its interpreter.
Intermediate Representation (IR). Intermediate repre-
sentation (IR) is an abstract expression used internally
to represent source code. IR has the same logic as the
applications written in the higher-level language, and it
can be further processed to lower-level machine code
or directly executed in the platform-specific runtime. IR
can be both portable and non-portable. The portable ones
are platform-agnostic and not specific to any particular
machine or platform, such as WebAssembly.
WebAssembly. WebAssembly (WASM) is a lightweight
binary-code instruction format and open standard devel-
oped by W3C Community Group [18]. It is also a portable
IR. Applications developed with various programming
languages (e.g. C/C++, Rust) can be compiled into unified
WASM codes. While WASM is originally designed for
the performance of applications on the Web, it has since
extended to non-web environments through specialized
runtimes such as Wasmer [35], Wasmtime [36], and We-
bAssembly Micro Runtime (WAMR) [16].

3. Motivation

In this section, we motivate our work by analyzing the
limitations of existing and potential strawman solutions
for attesting portable TEE applications.
Scope. We focus on WASM due to its popularity in both
academia [14], [15] and industry [16], [17]. Additionally,
we focus on more general scenarios where an application
comprises multiple portable payloads, with one acting as
the verifier for the others. Such scenarios include, but
are not limited to secure software development, secure
distributed and decentralized applications [34]. Scenarios
where a single portable payload requires attestation by
a relying party, where the verifier is not an enclave,
represents simpler cases and can be addressed similarly
as special cases of the scenarios discussed herein.

341

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 01,2025 at 06:18:50 UTC from IEEE Xplore. Restrictions apply.

⑤ Get expected but forged payload hash

④ Upload benign payload

③ Get expected runtime MR

⑥ Upload Private Input

2

Runtime

Attacker

Runtime

User

Intro: Attack Scenario

① Upload malicious payload Malicious
payload

Malicious
payload

② Compromise
the runtime

Figure 2: An undetectable attack for the nested attestation.

3.1. Nested Attestation Solutions

WAMR [16] and Enarx [17] are two prominent open-
sourced WASM runtimes that support TEEs. Both adopt
a nested attestation approach to attesting WASM applica-
tions. Specifically, a vanilla runtime without any portable
payload is firstly launched and attested. The attested run-
time is leveraged to load and attest a WASM payload. For
example, an attested WAMR [24] runtime calculates the
hash of the loaded portable payload and provides this hash
to the verifier for subsequent verification, e.g., comparing
the received hash with some reference value. Slightly dif-
ferently, an attested Enarx [17] runtime directly assesses
the integrity of the payload using a prefetched authorita-
tive hash (reference value) by itself from drawbridge [37].
Drawbridge is a public repository service for Enarx, al-
lowing developers to publish their developed applications.
Deployed runtimes can also download applications from
it and perform the aforementioned verification process.

As the hardware-based measurement only reflects the
initial state when the vanilla runtime is launched, the
security of such nested attestation approach highly relies
on the correct and secure implementation of sandboxing
techniques that isolate the runtime and the payload.

Taking WAMR as an example, without proper isola-
tion between the runtime and the payload, an adversary
could provide a malicious payload that could compromise
the whole runtime and take control of it (Step ➀ to ➁), as
shown in CVE-2023-26489 [26]. Since the measurement
is fixed after the runtime is initialized, it will persist
even when the runtime is compromised later. Hence, the
user could not distinguish between a genuine runtime
and a compromised one solely by verifying the runtime’s
measurement (Step ➂). This implies that when the user
receives an expected portable measurement and assumes
that both her remote runtime and payload are secure, she
may not, in fact, realize that she is in a situation where
the remote runtime has already been compromised by
an attacker in advance, and the received payload hash is
forged (Step ➃-➄). Consequently, sensitive data may be
inadvertently exposed (Step ➅), as illustrated in Fig. 2.
Although the mechanism of Enarx differs slightly, it re-
mains vulnerable to a similarly structured attack.

However, the correct and secure implementation of
such sandboxing techniques is quite challenging, as var-
ious CVEs about sandbox escape vulnerability are con-
tinuously reported [38], [39], [40], casting shadow on the
security of nested attestation solutions.

3.2. Strawman Solutions with Hardcoded
Portable Payload

Hardcoding the portable payload into the initial data of
the attester enclave could bind the resulting measurement
with the hardcoded payload, thus resolving the above
security issue. With such an approach, the same payload
yields diverse measurements on different platforms. This
variation necessitates that the verifier enclave (particularly
its loaded payload who needs to determine the trustwor-
thiness of an attester enclave before interacting with it)
needs a reliable source to obtain the reference values of
the binding information about the payload and the mea-
surement for identifying the portable payload from these
platform-dependent measurements. There are intuitively
three approaches to realizing such reliable sources:
Introduce a trusted third party to maintain and
provision the binding information. As an alternative,
introducing a trusted third party to oversee the binding
information could effectively decouple runtime-dependent
data from the payload. This setup enables the portable
payload to merely retain the necessary information for
attesting the trusted third party. Upon receiving a measure-
ment, the verifier enclave can query the trusted third party
for the identity of its corresponding portable payload, thus
determining its trustworthiness.

Nevertheless, this method introduces a single-point-
of-failure and expands the TCB of the whole system.
Specifically, centralizing binding information in one entity
might also lead to reliability concerns if it experiences any
failure. Moreover, adding this third party as a new com-
ponent of the TCB introduces an additional element that
must be trusted, further complicating security assurances.
Include the binding information into the portable
payload. Straightforwardly, when the verifier receives a
measurement from the attester enclave, it can refer to the
hardcoded binding information to verify the trustworthi-
ness of the corresponding portable payload run within the
attester enclave.

However, this method undermines the portability.
Since part of the binding information, specifically the
resulting measurements, depends on both the portable
payload and the potential underlying TEE runtimes. This
inadequate decoupling might lead to portability issues.
For example, when any platform’s runtime is updated, the
portable payloads would need to be updated to accommo-
date these changes, even when the logic of the payloads
stays the same.
Include the binding information into the final enclave.
Instead of including the binding information into the
portable payload, it is also possible to include the binding
information into the final enclave. Particularly, MAGE [34]
introduces a measurement derivation mechanism that en-
ables a group of enclaves to mutually derive each other’s
measurements without trusted third parties. Considering
L portable payloads, each of which could be run on
any one of N TEE runtimes, we can apply MAGE to
enable a group of all N × L potential final enclaves to
mutually derive each other’s measurements and identify
the corresponding portable payloads.

Nonetheless, this method requires the built final en-
claves to facilitate the mutual measurement derivation,

342

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 01,2025 at 06:18:50 UTC from IEEE Xplore. Restrictions apply.

thus suffering from similar portability issues as that in-
cludes the binding information into the portable payload.
Particularly, the current design of MAGE does not support
enclave updates, that is, once any of the portable payloads
get updated, all the final enclaves need to be rebuilt to
reenable the mutual attestation.

Summary. Nested attestation solutions adopted by
WAMR and Enarx suffer from security issues, while
strawman approaches with hardcoded payloads, including
MAGE, struggle with portability. These limitations lead to
the research problem: can we achieve both security and
portability in attesting portable TEE applications?

4. LATTE Overview

This section outlines the threat model, followed by
an overview of the attestation workflow using LATTE and
three key enabling techniques.

4.1. Threat Model

We assume that TEEs have been properly implemented
at the hardware level of target TEE platforms, and the
remote attestation mechanisms provided by these TEE
implementations are secure. That is, the adversary could
not compromise the hardware-backed measurement mech-
anism, nor collude with the manufacturer-backed remote
attestation service to forge a benign measurement for a
malicious enclave to bypass the remote attestation. We
assume the adversary has full control over the hypervisor,
operating system and other system softwares outside the
enclave, and thus could create and run any malicious
application on the host platform. However, we do not take
into account micro-architectural side-channel attacks [41],
[42], [43], [44], [45], [46], [47], [48], [49], [50], [51],
[52], [53], [54], nor denial-of-service attacks targeting
the mechanisms responsible for the identity-measurement
binding and the derivation of reference values.

In line with the potential attack presented in Sec. 3.1,
we do not assume secure isolation (e.g., correctly and
securely implemented SFI) between the TEE runtime and
the payload application. That is, the TEE runtime might
have software vulnerabilities that could be abused by a
carefully crafted payload with malicious code to take over
control of the TEE runtime, as demonstrated by the CVE-
2023-26489 [26]. However, we do not assume such mali-
cious code to be prevalent in benign payloads. That is, the
adversary could not leverage an arbitrary benign payload
to compromise the TEE runtime. Hence, the security goal
of LATTE is to ensure that the authenticity of such benign
payloads executed within TEE runtimes is endorsed by
the hardware-backed measurements.

4.2. Attestation Workflow

Similarly to nested attestation solutions adopted by
WAMR and Enarx, and mutual attestation solution MAGE,
LATTE does not replace the traditional attestation work-
flow, but works alongside it. The attestation workflow with
LATTE is illustrated in Fig. 3. Step ❶ and ❷ are generally
from the traditional attestation workflow, while step ❸ and
❹ are introduced by LATTE.

Attester
Enclave

Verifier
Enclave

❷
Report
valid?

❸
𝑀!"# ≔ 𝒱 𝐼
𝑀!"#?= 𝑀	

❹
	𝐼!"#?= 𝐼	

❶(𝑀, 𝐼)

Runtime Payload

Traditional Attestation Steps LATTE Attestation Steps

Figure 3: LATTE attestation workflow, where V is a deriva-
tion function that takes a portable identity I as input and
outputs the corresponding reference measurement Mref .

Step ❶. An attester enclave follows the traditional attesta-
tion process to generate attestation evidence, in the form
of an attestation report containing (1) the measurement
M of the attester enclave collected by the underlying
hardware, and (2) a portable identity I provided by the
software running within the enclave. The attestation report
is forwarded to the verifier enclave.

Step ❷. The verifier enclave verifies the authenticity of
the attestation report by verifying its associated signature,
which is signed using the attestation key from the trusted
TEE platform that runs the attester enclave. This verifica-
tion step is still part of the traditional attestation process.

Step ❸. The verifier enclave (particularly the TEE runtime
within) then verifies that the binding between the measure-
ment M and the portable identity I within the attestation
report is authentic. Verification involves the derivation of a
reference measurement Mref of an enclave within which
a specified trusted TEE runtime runs a portable payload
with the portable identity I . If the received measurement
M equals to Mref , the binding between M and I can be
trusted and I will be forwarded to the portable payload
within the verifier enclave.

Step ❹. The portable payload within the verifier enclave
derives a reference portable identity Iref to be compared
with the portable identity I from its underlying TEE
runtime. If they are equal, the trust on the portable payload
within the attester enclave can be established.

4.3. Key Techniques

As discussed in Sec. 3, we aim to achieve both secu-
rity and portability in attesting portable TEE applications.
Specifically, the final enclave should be built from both the
runtime and the portable payload to ensure security. For
portability, the portable identity serves as an additional
binding element alongside the measurement, so that the
runtime and portable payload are decoupled to allow for
their independent updates.

To achieve the above goals, LATTE introduces three
key techniques as follows:
• Restricted Payload Loading. LATTE incorporates the

portable payload or its identity in the final enclave,
and enforces the runtime to either fetch the payload in-
ternally or verify the identity of an externally received
payload before execution. Consequently, the hardware-
calculated measurement of the enclave is bound to

343

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 01,2025 at 06:18:50 UTC from IEEE Xplore. Restrictions apply.

the payload, addressing the security issues with nested
attestation solutions.

• Identity-Measurement Binding. To facilitate portability,
LATTE introduces a portable identity which is indepen-
dent of the underlying platform and solely associated
with the portable payload. A mechanism is introduced
to enable the verifier enclave to securely verify the
binding between a portable identity and its underlying
TEE runtime.

• Layered Reference-Value Derivation. To decouple the
runtime and portable payload for allowing their
independent updates, LATTE introduces a layered
reference-value derivation mechanism, enabling the
runtime and portable payload within the verifier en-
clave to derive reference values of the hardware-backed
measurement and the portable identity, respectively.
The derived reference measurement is used to verify
the trustworthiness of the TEE runtime within the
attester enclave, while the derived reference portable
identity is used to authenticate the portable payload
within the attester enclave.

4.4. Comparison with State-of-the-Art

We compare LATTE with WAMR and MAGE, rep-
resenting nested attestation solutions and strawman ap-
proaches with hardcoded portable payloads, respectively.
This comparison highlights LATTE ’s advantages in both
security and portability.

Security. WAMR fails to provide strong security due to
the potentially insecure isolation between the TEE runtime
and the payload application, as discussed in Sec. 3.1.
In contrast, both MAGE and LATTE ensure security by
constructing the final enclave from both the runtime and
the payload. This guarantees that the hardware-calculated
enclave measurement authenticates both components.

Portability. WAMR achieves portability by fully decou-
pling the payload from the runtime, allowing that updates
to one component do not affect the other. In contrast,
MAGE lacks portability because the common components
of all enclaves within the application must be rebuilt
whenever any of them is updated. Since the enclave is
built from both the portable payload and the runtime,
any modification to either necessitates rebuilding all en-
claves. LATTE addresses this limitation through a layered
reference-value derivation mechanism (detailed in Sec. 6),
which decouples runtime and payload verification. For
example, runtime updates require modifications only to
the runtime layer, leaving payloads unchanged, and vice
versa. A detailed analysis of LATTE ’s portability will be
presented in Sec. 6.5.

5. Problem Formulation

In this section we formulate the problem of attest-
ing portable TEE applications with strong security and
portability guarantees. Notations used in this paper are
listed in Table 1, with those in blue related to portable
payloads and those in red representing platform-dependent
components encompassing the runtime, build functions
and the final built enclave.

TABLE 1: Notations in this paper.

Symbol Description
P, Pl Portable code
I , IP Portable identity
IP Intermediate hash state of portable identity
Ri TEE runtimes
EP

i Enclave content
MP

i Enclave measurement
MP

i Intermediate hash state of measurement
Bi Build functions
B̃i Simplified versions of build functions
Mi Cryptographic hash functions for measurements
I Cryptographic hash function for portable identities
P Portable identity generation function
V Identity-measurement verification function
Gp Portable payload common part generation function
Fp Reference portable identity derivation function
Gr TEE runtime common part generation function
Fr Reference measurement derivation function

We first formally define the process of building en-
claves from portable payloads and TEE runtimes for het-
erogeneous TEE platforms, portable identities and mea-
surements.

Definition 1. Consider a portable payload PPld that
has portable code P and could be run on any one of N
TEE platforms TPtfi (i = 1, . . . , N), each of which has
a platform-specific TEE runtime Ri. We define a build
function Bi that is used to build the content EP

i of the
enclave EnclPi that could execute PPld on TPtfi:

EP
i ← Bi(Ri, P)

The enclave’s measurement MP
i and the portable identity

I of PPld are defined as the cryptographic hash values
of EP

i and P , using cryptographic hash functions Mi and
I, respectively:

MP
i ← Mi(E

P
i); IP ← I(P).

Since existing remote attestation provides a hardware-
level integrity guarantee of the measurement, we need
additional mechanisms to verify the binding between
portable identities and measurements. On the one hand,
an attester enclave should be able to provide the portable
identity of the payload executed within its TEE runtime
so that the portable identity could be included in the
attestation evidence for verification. On the other hand,
similar to that one enclave could also act as the verifier to
verify the integrity of a received measurement of another
enclave, it is desired that the built enclaves in our design
could also act as the verifier to verify the integrity of
the binding between a portable identity and a measure-
ment. Specifically, when given a pair of portable identity
and measurement (I,M), a verifier enclave could verify
whether M is the measurement of an attester enclave
Encl that executes PPld with portable identity I running
on some TPtf.

Hence, the security of the research problem in this
paper can be formalized and addressed by the mechanism
(denoted by identity-measurement binding mechanism)
defined as follows:

Definition 2. Consider a portable payload PPld that has
portable code P and could be run on any one of N TEE
platforms TPtfi (i = 1, . . . , N), each of which has a

344

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 01,2025 at 06:18:50 UTC from IEEE Xplore. Restrictions apply.

platform-specific TEE runtime Ri and a build function
Bi. An identity-measurement binding mechanism consists
of two functions (P , V):
• P is called portable identity generation function, which

takes as input an enclave built from P and a TEE
runtime Ri, and outputs the portable identity of P,
specifically, P satisfies

P(Bi(R,P)) = I(P) (1)

• V is called identity-measurement verification function,
which takes as input a final enclave built from P and a
TEE runtime Ri, a TEE runtime index j (= 1, . . . , N),
a portable identity I and a measurement M , and
outputs 1 only when there exists a portable payload
with portable code P̂ running within a TEE runtime
Rj such that I = I(P̂) and M = Mj(Bj(Rj , P̂)),
specifically, V satisfies

V(Bi(Ri, P), I,M , j)

=

 1, ∃P̂ : I = I(P̂)∧
M = Mj(Bj(Rj , P̂))

0, otherwise

(2)

Specifically, P is leveraged by a final enclave (acting
as an attester enclave) to attest itself to another entity
while V is utilized by a final enclave (acting as a verifier
enclave) to verify the integrity of the binding between a
portable payload and another final enclave.

Note that the identity-measurement binding mecha-
nism does not help determine whether the verified portable
identity and measurement are trustworthy or not. Usually,
some reference values are needed to be compared with to
determine the trustworthiness.

To achieve high portability, it is desired the trustwor-
thiness of the portable identity and the measurement can
be determined by the portable payload and the underly-
ing TEE runtime individually, so that the development
of portable payloads and the development of the TEE
runtimes can be decoupled.

Particularly, a TEE runtime Ri, i = 1, . . . , N should
be able to derive the reference measurement of a final
enclave built from some portable payload with a given
portable identity I and a TEE runtime Rj , j = 1, . . . , N .
While i ̸= j, additional information are needed for the
derivation as discussed by Chen et al. [34]. Inspired
by their solution which does not require any trusted-
third party to provide such information, we assume each
TEE runtime is in the form of Ri = R′

i||Rcommon, i.e.,
the concatenation of its specific part R′

i and a common
part Rcommon. Particularly, the specific part includes all
necessary functionalities to execute the payload on the
underlying platform, while the common part is shared by
all N TEE runtimes to be used for reference measurement
derivation. Ideally, Rcommon should be generated solely
from the specific parts of the TEE runtimes without any
knowledge of the potential payloads.

Similarly, when a group of L portable payloads PPldl
(l = 1, . . . , L), each of which with portable code Pl

would like to derive the reference portable identities of
the other portable payloads, we also assume the portable
code Pl is in the form of Pl = P ′

l ||Pcommon, i.e., the
concatenation of its specific part P ′

l and a common part
Pcommon shared by all L PPlds. The common part enables

portable payloads to mutually attest each other without
any trusted third party, which is desired for multi-enclave
applications, as discussed by Chen et al. [34]. Note that
portable TEE applications without the need of mutual
attestation can be treated as a special case when L = 1.
Ideally, the generation of Pcommon should be independent
of the underlying TEE platforms.

Hence, the portability of the research problem in this
paper can be formalized and addressed by the mecha-
nism (denoted by reference-value derivation mechanism)
defined as follows:

Definition 3. Consider a group of L portable payloads
PPldl (l = 1, . . . , L), each of which has portable code
Pl = P ′

l ||Pcommon and could be run on any one of N
TEE platforms TPtfi (i = 1, . . . , N), each of which
has a platform-specific TEE runtime Ri = R′

i||Rcommon
and a build function Bi. Cryptographic hash functions Mi

and I are adopted to calculate measurements and portable
identities. A reference-value derivation mechanism of two
pairs of functions ((Gp,Fp), (Gr,Fr)):
• Gp is called portable payload common part generation

function, which takes as input only the specific parts of
L portable payloads, and outputs the portable payload
common part Pcommon, specifically, Gp satisfies

Pcommon ← Gp(P ′
1, . . . , P

′
l) (3)

• Fp is called reference portable identity derivation
function, which takes as input the portable payload
common part Pcommon and an index k (= 1, . . . , L), and
outputs the portable identity of PPldk, specifically, Fp

satisfies
Fp(Pcommon, k) = I(Pk) (4)

• Gr is called TEE runtime common part generation
function, which takes as input only the specific parts
of N TEE runtimes, and outputs the TEE runtime
common part Rcommon, specifically, Gr satisfies

Rcommon ← Gr(R′
1, . . . , R

′
N) (5)

• Fr is called reference measurement derivation func-
tion, which takes as input the TEE runtime common
part Rcommon, a TEE runtime index j (= 1, . . . , N), a
portable identity I . If there exists a portable payload
with portable code P̂ such that I = I(P̂), Fr outputs
the measurement of the final enclave built from P̂ and
TEE runtime Rj . Otherwise, Fr outputs ⊥ (indicating
the failure of measurement derivation. Specifically, Fr

satisfies

Fr(Rcommon, j, I)

=

{
Mj(Bj(Rj , P̂)), ∃P̂ : I = I(P̂)
⊥, otherwise

(6)

Note that Gp and Fp can be solely adopted by portable
TEE application developers, while Gr and Fr can be
employed by TEE runtime developers on their own, thus
achieving the portability.

6. LATTE Design

In this section, we detail the design of LATTE for
attesting portable TEE applications with strong security

345

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 01,2025 at 06:18:50 UTC from IEEE Xplore. Restrictions apply.

and portability. Specifically, we present solutions to ad-
dress the following challenges: (1) how to enable a mea-
surement to guarantee the integrity of loaded portable
payload (Sec. 6.1), (2) how to generate and verify the
binding between a portable identity and a measurement
(Sec. 6.2), (3) how to facilitate the portable payload and
the TEE runtime to derive reference values for verification
separately (Sec. 6.3). Combining these techniques, we
describe the workflow of LATTE (Sec. 6.4) and analyze
its security and portability (Sec. 6.5).

6.1. Restricted Payload Loading

To address the security issues of nested attestation, the
identity of the portable payload to be loaded in the TEE
runtime should be bound to the hardware-backed measure-
ment to enjoy the architecture-level integrity guarantee.
There are generally two methods to achieve this:
• Hardcoding Portable Payload. A straightforward ap-

proach is to hardcode the entire portable payload into
the enclave. After launch, the runtime within the en-
clave executes only the hardcoded payload, as dis-
cussed in Sec. 3.2.

• Hardcoding Portable Identity. An alternative approach
is to hardcode only the portable identity into the en-
clave. Upon receiving a portable payload, the enclave
calculates the portable identity of the incoming pay-
load, and proceeds with loading and execution only if
this calculated portable identity matches the hardcoded
value. A simplified version of the build function B̃i
that takes as input the portable identity instead of the
portable payload can be defined as

EP
i ← Bi(Ri, P) = B̃i(Ri, I(P))

Both methods could securely bind the identity of the
portable payload with the hardware-backed measurement.
One obvious difference is in the sizes of the built enclaves.
Hardcoding the entire portable payload results in larger
enclaves, thus incurring more storage and/or communica-
tion overhead than hardcoding only the portable identity.
For example, to support one portable payload on N TEE
platforms, N final enclaves will be built and maintained.
Each final enclave has a full copy of the portable payload
within its initial data. On the other hand, hardcoding only
the portable identity requires to store only one copy of the
portable payload. Throughout this section, we will discuss
more advantages of hardcoding the portable identity over
hardcoding the entire portable payload, and adopt the
former in our final design.

One concern is that such restricted payload loading
undermines the TEE runtime’s ability to load various pay-
loads based on user requests. Particularly, will it hamper
the sharing of the TEE runtime across different portable
payloads, which requires the deployment of multiple en-
claves with the same TEE runtime, thus increasing the
memory overhead?

To address this concern, we emphasize that the re-
stricted payload loading aims to restrict the sharing of the
TEE runtime across mutually-distrusting users. Binding a
portable payload with the hardware-backed measurement
enables the user to verify that the initial state of the
launched enclave is as expected. A user with the need of

sharing the same TEE runtime across her multiple pay-
loads could firstly develop a specialized portable payload
(acting as her customized library OS or loader) to be built
into the enclave, and leverage it to load her other portable
payloads after the enclave is launched and attested. On the
other hand, framework-level support for such TEE sharing
will be left to future work.

6.2. Identity-Measurement Binding

To facilitate the portability in attesting portable TEE
applications, portable identity is incorporated into the
attestation evidence as a binding element alongside the
measurement. As outlined in Sec. 5, it is necessary to
realize a portable identity generation function (P) within
attester enclaves and an identity measurement verification
function (V) within verifier enclaves.
Portable Identity Generation. When the entire portable
payload is hardcoded into the built enclave, P can be
realized by applying I to the content of the hardcoded
portable payload to generate the corresponding portable
identity. When the portable identity is hardcoded into the
built enclave, P could simply extract the hardcoded value,
and rely on the enclave to ensure that the loaded payload’s
identity matches the hardcoded value.
Identity-Measurement Verification. When receiving a
pair of portable identity and measurement (I,M) along
with the evidence, the verifier enclave needs to verify
the integrity of the measurement and the binding. Firstly,
following the traditional remote attestation process, the
verifier verifies the evidence’s trustworthiness by con-
firming its signature was generated with the enclave’s
attestation key. This step establishes the authenticity and
the secure origin of the enclave’s evidence. Afterwards, V
is employed to ascertain the integrity of the measurement-
portable identity binding. According to Eq. (6), V needs
to check the existence of a portable payload P̂ such that
I = I(P̂) ∧M = Mj(Bj(Rj , P̂)).

In the case of hardcoding the entire portable payload,
it is challenging for the built verifier enclave to check the
existence of a portable payload P̂ such that I = I(P̂) and
M = Mj(Bj(Rj , P̂)) without extra knowledge about P̂.
Potential solutions include (1) the attester enclave pro-
vides an additional pointer to its payload located in some
public repositories (e.g., Drawbridge[37] for Enarx[17]);
(2) the attester enclave provides its payload with the
attestation evidence. Besides the communication overhead
for obtaining the potential payload, the former requires
additional cost for running such a public repository while
the latter might raise privacy concerns about disclosing the
payload to unwelcome verifiers whose identities haven’t
been verified by the attester enclave.

In contrast, in the case of hardcoding the portable
identity, the verifier enclave needs to implement V to
check the existence of a portable payload P̂ such that
I = I(P̂) and M = Mj(B̃j(Rj , I(P̂))). Note that one
could determine the result without knowing the concrete
content of P̂. Particularly, executed by the verifier en-
clave EP

i ← B̃i(Ri, I(P)), V could directly compare the
received measurement M against the derived reference
measurement using the received portable identity I , that
is, Mj(B̃j(Rj , I)), and output 1 if M = Mj(B̃j(Rj , I)).

346

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 01,2025 at 06:18:50 UTC from IEEE Xplore. Restrictions apply.

The missing information for the derivation of the reference
measurement is the knowledge about the TEE runtime Rj ,
which will be covered in Sec. 6.3.

Due to the advantages of hardcoding the portable
identity over hardcoding the portable payload, we focus
on the former for the rest of the paper.

6.3. Layered Reference-Value Derivation

To achieve portability in attesting portable TEE appli-
cations, we propose layered mutual attestation, enabling
the portable payload and TEE runtime of a verifier en-
clave to derive reference values for verifying the received
portable identity and measurement, respectively.

As illustrated in Sec. 5, the intuition for reference-
value derivation functions is to enable the portable payload
and runtime to independently derive the reference values
from a pre-generated common part. To realize portability,
the generation of this common part for portable payloads
and runtime requires only their specific parts respectively
as input, as outlined in Eq. (3) and Eq. (5).

Reference-Value Derivation for Portable Payload. One
straightforward design of (Gp, Fp) is adapted from
MAGE [34], which is based on the observation that the
calculation process of cryptographic hash functions used
in TEEs is usually deterministic and sequential. Therefore,
it is possible to derive the final hash value if one knows
the intermediate hash state of the prefix portion and the
content of the remaining portion to be updated. Partic-
ularly, consider a group of L portable payloads PPldl
(l = 1, . . . , L), each of which with portable code Pl (in
the form of Pl = P ′

l ||Pcommon) would like to derive the ref-
erence portable identities of the other portable payloads,
(Gp, Fp) can be defined as follows:

Pcommon ← Gp(P ′
1, . . . , P

′
l) =

(
IP

′
1 , . . . , IPl

′
)

Fp(Pcommon, k) = I
(
Pcommon, IPk

′
)

= I (P ′
k∥Pcommon) = I(Pk) (7)

Note that the use of intermediate hash states in MAGE
is due to the restriction that the measuring process per-
formed by hardware cannot be modified. The memory
overhead includes additional metadata such as the size
of the processed message. When it comes to portable
identities, we can reduce memory overhead by redefining
the definition of portable identity IP of a portable payload
P = P ′∥Pcommon as follows:

IP ← I(I(P ′)∥Pcommon) (8)

And an alternative design of (Gp, Fp) is as follows:

Pcommon ← Gp(P ′
1, . . . , P

′
l) = (I(P ′

1), . . . , I(P
′
l))

Fp(Pcommon, k) = I (I(P ′
k)∥Pcommon) = IPk (9)

Both of the these two designs are compatible with the
other components in LATTE, as we properly decouple the
development of portable payloads and TEE runtimes.

Reference-Value Derivation for TEE Runtime. Differ-
ent from the design of (Gp, Fp), besides the content of
the TEE runtime, the final enclave also needs to include

Platform 𝑗

Online
Attestation

Phase

Online
Deployment

Phase

Offline
Development

Phase

𝑃! 𝑃"

Application developers
……

#ℬ#Platform 𝑖

Final
Enclave 𝑖 𝑅# 𝐼$!

𝒱
Final enclave 𝑗

ℱ%

𝐼,𝑀
𝐼

𝑅&𝑅# 𝐼$! 𝐼$"

ℱ'𝒱 ℱ% ……

𝑅()**)+
𝑃()**)+

ℱ'𝑙

#ℬ&

TEE runtime 𝑅#

𝑅()**)+
𝑃()**)+

Final
Enclave 𝑗 𝑅& 𝐼$" 𝑅()**)+

𝑃()**)+

ℱ'𝒱 ℱ%

TEE runtime 𝑅&

Reference portable identity

Identity-measurement verification

Reference measurement

𝑅()**)+
𝑃()**)+

Figure 4: LATTE Workflow Overview.

information about the portable payload, which is irrelevant
to the TEE runtime, and thus introduce challenges into
the design of the build function and (Gr,Fr). The choice
of hardcoding only the portable identity pays off here. It
results in the following neat designs. The build function
is defined as B̃i(Ri, I) = Ri∥I = R′

i∥Rcommon∥I and its
measurement can be denoted as:

Mi(B̃i(Ri, I)) =Mi(R
′
i∥Rcommon∥I)

=Mi

(
Rcommon∥I,M

R′
i

i

)
From the above equation, we can measure the specific part
of the TEE runtimes of all N platforms first to collect the
intermediate hash states MR′

i
i in advance, and group them

into a list as the common part of the runtime, i.e.,

Rcommon ← Gr(R′
1, . . . , R

′
N) =

(
M

R′
1

1 , . . . ,M
R′

N

N

)
Subsequently, by retrieving the corresponding interme-

diate hash state for a given platform j from Rcommon, the
remaining part of the hash calculation involves only the
common runtime content, readily accessible to the verifier
since it is identical to that of the attester enclave, and the
portable identity, which is part of the verifier’s received
binding. Thus, the verifier is able to derive the correspond-
ing measurement of the portable identity effectively, using
Fr defined as follows,

Fr(Rcommon, j, I) = Mj

(
Rcommon∥I,M

R′
j

j

)
= Mj (Rj

′∥Rcommon∥I)
= Mj(B̃j(Rj , I))

6.4. LATTE Workflow

By integrating all the aforementioned techniques, we
now establish the workflow of LATTE, as depicted in
Fig. 4. The workflow includes three phases as follows:

Offline Development Phase. The initial phase is the
offline development phase. TEE runtimes with the corre-
sponding build functions B̃i, are developed publicly, po-
tentially as open-source projects, allowing users to assess
their security. It is important to note that the identity-
measurement verification function V and the reference
measurement derivation function Fr are incorporated into
the runtime as a library. Then, the common part Rcommon
can be constructed from the runtime of all potential TEE

347

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 01,2025 at 06:18:50 UTC from IEEE Xplore. Restrictions apply.

Attester Enclave Verifier Enclave
Payload 𝑃!

TEE runtime	𝑅"

Payload 𝑃#

TEE runtime	𝑅$
𝑰,𝑴

Native
code layer

Portable
code layer

ℱ% 𝑅&'(('), 𝑖, 𝐼 ?= 𝑀

𝑃&'((')

𝑅&'((') 𝑅&'((')

𝑃&'((') ℱ* 𝑃&'(('), 𝑙 ? = 𝐼

𝑰

Figure 5: The Online Attestation Phase.

platforms using Gr, and concatenated with each runtime.
On the other hand, application developers develop TEE
applications separately. Once the portable TEE application
developer completes the development of a portable TEE
application consisting of L portable payloads, she could
integrate the reference portable identity derivation func-
tion Fp into these portable payloads, build the common
part using Gp and generate the final portable payloads.

Deployment Phase. The second phase is the deployment
phase, which might differ considerably depending on con-
crete application scenarios. In the case of confidential
serverless computing [19], [20], [21], [22], upon receiving
deployment requests and portable payloads, the confiden-
tial serverless computing platform determines the optimal
server allocation for each payload based on current avail-
ability. On the chosen servers, the corresponding build
function B̃ is used to hardcode the portable identities of
the requested portable payloads into the final enclaves,
along with the corresponding TEE runtime. Following
this, each enclave is launched and initiated with a portable
payload; if the portable identity calculated from the input
payload matches the hardcoded value, the runtime pro-
ceeds to load and execute the payload.

Online Attestation Phase. The third phase is the online
attestation phase, as shown in Fig. 5. When one final en-
clave EPl

i with portable payload Pl on platform i, intends
to attest itself to another enclave EPk

j with payload Pk

on platform j, it employs the portable identity generation
function P , sending its portable identity I(Pl) with other
attestation evidence generated by the conventional remote
attestation process, e.g., quote, to the verifier EPk

j . Upon
receipt, EPk

j utilizes the identity-measurement verifica-
tion function V to verify the integrity of the received
binding. This process is handled by the runtime with Fr

to derive the reference measurement from its runtime’s
common part. Following successful integrity verification,
the received portable identity is forwarded to the portable
payload Pk to ensure that it corresponds to one of the
portable payloads within the application. The payload then
employs Fp to derive the reference portable identity from
its payload’s common part. Once the derived portable
identity matches the received one, the attestation process
is considered successfully completed.

6.5. Analysis of LATTE

Now we analyze the security and portability of LATTE.
For security, we explore potential vulnerabilities, attacks,
and the trusted computing base (TCB) of LATTE. For
portability, we discuss LATTE’s role in decoupling the
development of portable payloads and runtimes.

Security Analysis. We first analyze how malicious pay-
loads could affect LATTE. Due to the restricted pay-
load loading, the executed payload will be bound to the
hardware-backed measurement. To launch an enclave that
could load a malicious payload, the malicious payload’s
identity will be built into the enclave, and reflected by the
resulting measurement, which will not match the reference
measurement derived by target enclaves executing benign
payloads, thus mitigating the attack described in Sec. 3.1.
Moreover, to thwart attacks targeting the hash functions,
LATTE can adopt a secure hash function, such as SHA-
256, for portable identities. This selection allows for
defending against preimage attacks and second-preimage
attacks. For length extension attacks, which is primarily
used to calculate a message containing a secret without
prior knowledge of the secret, they hold no utility within
the context of LATTE.

We then discuss the TCB of LATTE. Note that the TCB
of nested attestation solutions (as discussed in Sec. 3.1)
includes the software-based compartmentalisation for iso-
lating the runtime from the payload. These isolation tech-
niques usually involve instrumenting payloads to prevent
access to beyond its current security layer, resulting in
a linearly increased code size, e.g., ranging from 14%
to 32% reported by Zhao et al. [22]. As a comparison,
LATTE removes the need of such software-based isolation
from the TCB. On the other hand, the increased TCB
includes the implementation of the identity-measurement
binding mechanism and reference-value derivation mech-
anism, resulting in a fixed increased code size, e.g., 993
lines of code in our prototype implementation.

Portability Analysis. In LATTE, both the development
and verification of the runtime and portable payload are
fully decoupled. During the development phase, two com-
mon part generation functions, Gr and Gp, process the
specific components pertaining to the runtime and portable
payload, respectively. This separation enables developers
of the runtime and those working on portable TEE appli-
cations to independently complete and finalize their work
without having to take into account each other’s progress.
While in the online attestation phase, the verification of
runtime measurements uses inputs solely from the com-
mon part of the runtime. Similarly, the verification of
the portable identity depends entirely on inputs from the
common part of the portable payload. This decoupling
significantly enhances the system’s modularity, enabling
more straightforward updates and independent scalability.

We then look into the portability issues associated with
updates, as discussed in Sec. 3.2, for concrete analysis.
When an update is required for a runtime on any platform,
the changes are confined to the common part of the
runtimes, meaning that no changes are required for the
payloads due to the well-designed verification process em-
ployed by LATTE. On the other hand, updating a portable
payload does not require recompilation for runtimes. The
only requirement is to regenerate the common part of
payloads and rebuild the associated enclaves. Therefore,
LATTE successfully adheres to the initial objective of
facilitating portable development, allowing independent
updates for runtimes and payloads.

348

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 01,2025 at 06:18:50 UTC from IEEE Xplore. Restrictions apply.

7. Implementation

In this section, we present our prototype implemen-
tation as a demonstration of how to instantiate LATTE
for real heterogeneous TEEs. We select SGX and Penglai
as exemplar heterogeneous TEEs, WASM as the portable
language for developing portable TEE applications, and
the WAMR as the underlying runtime.

Our implementation is based on Intel SGX SDK (ver-
sion 2.23), Penglai TVM (commit bf52983), and WAMR
(commit 72b34ea). While WAMR already supports ex-
ecuting WASM payloads within SGX enclaves, Penglai
is not supported, and consequently, we have adapted it
to Penglai platform. Furthermore, we have developed a
standalone library, named lib_latte, which encom-
passes implementations for measurement derivation and
includes the necessary utility tools for LATTE. This library
features unified API specifications for heterogeneous TEE
platforms to facilitate layered attestation within LATTE,
and we provide the corresponding implementation within
WAMR for both SGX and Penglai platforms.

For portable identities, we adopt SHA-256 [55] as its
cryptographic hash algorithm, and the latter derivation de-
sign discussed in Sec. 6.3 (Eq. (8) and Eq. (9)). SHA-256
is one of the most secure hash functions nowadays. Thus,
the generated portable identities can identify the portable
codes while successfully protecting their integrity.

Next, we will first discuss the necessary modification
of SGX and Penglai SDKs and detailed implementation
of mechanisms in lib_latte, adhering to the sequence
outlined in Sec. 6. Then, we will present the APIs in
lib_latte to support layered attestation.

7.1. Restricted Payload Loading

Given the benefits outlined in Section 6, we have opted
to hardcode the portable identity to facilitate the restricted
payload loading. This section discusses our techniques for
reserving specific sections for portable identities on SGX
and Penglai platforms, and it describes how we implement
the build functions to hardcode portable identities into
these sections to produce the final enclaves.

For SGX, we provide an SDK library libsgx_wasm,
which reserves a read-only section called .sgx_wasm
for the portable identity. For the process of hardcoding
the portable identity into the .sgx_wasm section, we
extended the signing tool of the Intel SGX SDK with
an additional mode SIGN_WASM, in which the modified
signing tool hardcodes the input portable identity into the
.sgx_wasm section before signing the enclave.

For Penglai, we modified the enclave driver in Penglai
SDK to reserve a .penglai_wasm section at a prede-
fined high address 0xFFFFFFF000000000 (the reason
for choosing this address will be detailed in Sec. 7.3).
Subsequent to this reservation, the portable identity input
is copied directly to the designated page within the enclave
for the purpose of hardcoding.

In conjunction with these platform-specific mod-
ifications, we provide APIs in both SDKs, self_
portable_identity(), allowing for direct access to
these reserved sections. This enables runtimes to compare
the calculated portable identity of a given portable payload

and the hardcoded value for verification before the loading
and execution of the given portable payload.

7.2. Identity-Measurement Binding

In LATTE, the identity-measurement binding is trans-
mitted alongside the conventional evidence to facilitate
layered attestation for portable TEE applications. For an
attester enclave, it is necessary to generate its own portable
identity using the function P to produce the binding. On
the other hand, a verifier enclave is required to assess the
integrity of the received identity-measurement bindings
using the function V .

Portable Identity Generation. Portable identities are
hardcoded into designated reserved sections, with APIs
available in both the SGX and Penglai SDKs. These
APIs can be directly invoked to retrieve the corresponding
portable identities of attester enclaves.

Identity-Measurement Verification. As outlined in
Sec. 6.2, the verification of an identity-measurement bind-
ing involves two primary steps. The first is to determine
the authenticity of the received evidence by checking
its signature, akin to the procedure used in conventional
remote attestation. The second step involves using the ref-
erence measurement derivation function for TEE runtime
to directly derive the reference measurement for the given
portable identity and then comparing it with the received
measurement, which is straightforward. Further details of
the derivation function will be discussed subsequently.

7.3. Layered Reference-Value Derivation

As illustrated in Sec. 6.3, the reference-value deriva-
tion functions are utilized to enable portable payload and
runtime to independently derive the reference values from
a pre-generated common part, thereby allowing the veri-
fier enclave to assess the trustworthiness of the received
portable identities and measurements. To implement this
derivation mechanism and ensure the derived result aligns
with the correct measurement or portable identity values,
three key tasks are highlighted: (1) generating the common
part, (2) concatenating this common part after the specific
part in the hash calculation process, and (3) simulating
the hash calculation process based on intermediate hash
states extracted from the corresponding common part. The
description of how these tasks are achieved for both the
portable payload and runtime is as follows.

Reference-Value Derivation for Portable Payload. To
generate the common part of a set of WASM programs,
we provided a tool named insert-wasm-latte in
our library lib_latte, integrated with a crypto library
modified from OpenSSL [56]. This tool calculates the
SHA-256 hash for each WASM file, groups these hashes
into a list which then forms the common part, and encodes
this list into an additional custom section named portid
for all input WASMs.

For the second task, insert-wasm-latte places
this section at the end of the raw WASM files to form
the final WASM file, ensuring that it becomes the final
material included in the portable identity update process.
It should be noted that the size of this section does not

349

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 01,2025 at 06:18:50 UTC from IEEE Xplore. Restrictions apply.

require alignment to 64B for SHA-256, as padding will
be handled separately.

Regarding the third task, a specialized parsing func-
tion, parse_portid_section() has been developed
within lib_latte that utilizes an index to extract the
SHA-256 hash of a specified WASM component within
the application. This is further invoked by another function
in lib_latte, derive_portable_identity(),
which continues the hash calculations on the indexed
SHA-256 hash using the integrated crypto library.

Reference-Value Derivation for TEE Runtime. To
generate the common part of runtimes, it is neces-
sary to collect the intermediate hash states from both
SGX and Penglai runtimes. For SGX, we extended
the signing tool of the Intel SGX SDK by intro-
ducing one more mode GEN_WASM_VM_MR. With this
mode, the intermediate hash value, the total number
of blocks processed right before loading .sgx_wasm,
with the offset of .sgx_wasm, all of which constitute
the intermediate hash state of SHA-256, can be col-
lected. For Penglai, we customized the implementation
of PLenclave_attest() (the official API of Penglai
SDK to get the enclave measurement and generate the en-
clave report for host program) such that when the portable
identity section address (0xFFFFFFF000000000) is
encountered, the intermediate hash value and the total
number of bytes processed are output.

Once all intermediate hash states are collected, they
are hardcoded into the TEE runtime and positioned at
the end of the measurement calculation process to ensure
accurate derivation.

For SGX, we streamlined the process by merging
the hardcoding of the intermediate hash states with
portable identities. The signing tool’s extended mode,
SIGN_WASM, takes two inputs: the calculated portable
identity and a file containing intermediate hash states
from both SGX and Penglai runtimes. The section to be
hardcoded, .sgx_wasm is reserved with 8 KB, i.e. two
pages, in our existing implementation. The signing tool
first hardcodes the portable identity into the first page and
the intermediate hash states into the second. This sequence
is reversed compared to what we described in Sec. 5;
however, since both components are known to the verifier,
it does not affect their ability to derive the final measure-
ment. If more intermediate states are required that exceed
one page, the settings can be easily adjusted to accommo-
date the increased demand. Additionally, we must adjust
the measurement calculation order to facilitate the correct
derivation. On SGX, the enclave measurement is updated
during the enclave creation, in which the enclave pages
are created and initialized by loading from the enclave
binary file. Therefore, we modified the enclave loader in
Intel SGX SDK such that .sgx_wasm section is loaded
at last, following the method introduced in MAGE [34]. In
more detail, when a .sgx_wasm section is found during
enclave creation, the modified loader would skip it in the
original loading process and load the pages in the section
in the end, just before the enclave initialization.

For Penglai, a similar approach is adopted: the
portable identity and intermediate hash states are hard-
coded into two consecutive pages at the address
0xFFFFFFF000000000. Given that Penglai measure-

ment is calculated by traversing the enclave memory
via the page table from the lowest address to the high-
est address, data located at higher addresses is incorpo-
rated later in the measurement update sequence. We have
checked that 0xFFFFFFF000000000 is the highest in
the default memory layout of the enclave in Penglai SBI.
Consequently, both the portable identity and the common
part are included last into the measurement calculation,
ensuring accurate derivation results.

For the third step, which involves completing
the remaining hash calculations, two APIs in
lib_latte, sgx_derive_measurement()
and penglai_derive_measurement(), are
straightforwardly implemented for that. The former
utilizes the SHA-256 algorithm for SGX measurements,
while the latter employs the SM3 hash algorithm for
Penglai measurements.

7.4. lib_latte_wamr Attestation APIs

With the aforementioned modifications in SGX SDK
and Penglai SDK/SBI, we specify two unified APIs in
lib_latte to facilitate the entire layered attestation
process in LATTE, and implement them within WAMR
for both SGX and Penglai.
latte_attest(). When one portable payload needs
to attest itself, it can invoke this API to generate its
identity-measurement binding. This information with the
platform and portable payload index, is then sent to the
intended verifier. It is implemented directly by leveraging
self_portable_identity() to acquire its portable
identity, and uses the conventional attestation APIs in the
SGX and Penglai SDK to obtain its measurement.
latte_verify(). For verifier enclaves, this API is
provided for creating a socket for incoming attesting
requests. When there is one request received, it in-
vokes sgx_derive_measurement() or penglai_
derive_measurement() with the received portable
identity to validate the integrity of the received
measurement. Then, it calls derive_portable_
identity() to determine if this portable identity
matches the specified indexed portable payload within the
application through comparison.

8. Evaluation
In this section, we present the evaluation results of

our prototype implementation. Particularly, we conduct a
comparison of lib_latte with the nested attestation
solution adopted by WAMR, in Sec. 8.1, and demonstrate
the application of LATTE in a heterogeneous attestation
scenario in Sec. 8.2.
Experimental setup. All the evaluations are performed
on a Lenovo Thinkpad X1 Carbon (8-th Gen) laptop with
a 4-core Intel CPU i5-10210U and 16 GB memory. The
host OS is Ubuntu 20.04.5, with Linux kernel 5.10. Note
that all experiments related to Penglai enclave are booted
by penglai-qemu’s commit 39ddb39.

8.1. Performance Evaluation

Since our prototype is based on WAMR, which
adopts a nested attestation solution (in the form of a

350

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 01,2025 at 06:18:50 UTC from IEEE Xplore. Restrictions apply.

TABLE 2: LATTE Performance Evaluation.

Size WAMR-
librats

LATTE-
lib_latte

Overhead
(G.M.)

Start-up

200 KB 95.7 ms 96.2 ms 0.57%
400 KB 98.0 ms 98.5 ms 0.49%
600 KB 100.1 ms 100.6 ms 0.48%
800 KB 102.3 ms 102.6 ms 0.38%
1000 KB 104.8 ms 105.2 ms 0.39%

Evidence generation 119.3 ns 123.6 ns 3.6%

library librats) for attesting WASM payloads on Intel
SGX, we compare the performance of lib_latte with
librats on Intel SGX.

Overhead of Start-up Latency. We first evaluate
the start-up latency due to restricted payload loading.
While the start-up process for WAMR-librats involves
launching an enclave with the WASM runtime which
further loads a given WASM payload and calculates its
hash, the start-up process for LATTE-lib_latte ad-
ditionally requires comparing the calculated hash with
the hardcoded reference value. We measured the start-
up latency by loading a series of WASMs ranging from
200 KB to 1000 KB in size, averaging the results over
1000 iterations and documenting the outcomes in Table 2.
It is noteworthy that WAMR supports multiple WASM
modules within a single runtime, and WAMR-librats
employs a mutex lock to synchronize hash calculations
across these modules. However, to align with LATTE’s
current single-module-per-runtime design, we removed
this mutex from WAMR-librats in our evaluation,
ensuring an equivalent comparison baseline. As shown
in Table 2, the additional overhead induced by start-up
latency in our system ranges from 0.38% to 0.57%, with a
geometric mean of 0.456%, which is minimal. This slight
increase is attributed primarily to the extra steps involved
in retrieving the reference measurement and conducting
validation checks; these are relatively inexpensive com-
pared to hash calculation. Moreover, since the number of
these extra steps is fixed, the overhead percentage actually
decreases (from 0.57% to 0.39%) as the size of the WASM
payload increases.

Overhead of Evidence Generation. We measure la-
tency in generating attestation evidence within latte_
attest(), averaging results from 10000 iterations. To
produce the attestation evidence, librats inserts the
calculated hash of the payload into the generated report,
while lib_latte extracts the hardcoded portable iden-
tity and attaches it to the generated report. Notably, similar
to our previous evaluation settings, we have eliminated
the unnecessary mutex lock from librats, alongside
other inessential configurations, for a cleaner and fairer
comparison between the two libraries. The overhead of
evidence generation latency is presented in Table 2. The
results show quite a small difference in latency between
the two libraries, varying by a mere 4.3 ns.

Reference-Value Derivation Efficiency. Since librats
does not support mutual attestation, we only measure
the efficiency of the reference-value derivation mecha-
nism introduced by LATTE. As described in Sec. 7.3,
the time cost of deriving a reference measurement and
a reference portable identity is highly related to the size

of the TEE runtime’s reserved section, and portid
section in WASM, respectively. For the base case with
a .sgx_wasm/.penglai_wasm section of 8KB (sup-
porting up to 85 TEE runtimes) and a portid section
of 4KB (supporting up to 126 portable payloads), it takes
41.8/68.0 µs to derive a reference measurement, and 16.2
µs to derive a reference portable identity, respectively. We
also evaluated the efficiency of reference-value derivation
with regards to various sizes of these two sections, respec-
tively. The results, presented in Fig. 6, demonstrate that
the time consumption increases linearly with the size of
the sections. This outcome is anticipated since the hash
calculation process is sequential; larger section size leads
to more data for remaining hash calculations from the
intermediate state, thus increasing derivation time.

204 409 614 819 1024 1228
Section Size [KB]

0

1

2

3

4

T
im

e
[m

s]

portable identity derivation

204 409 614 819 1024 1228
Section Size [KB]

0
1
2
3
4
5
6
7

S
G

X
T

im
e

[m
s]

measurement derivation

0

2

4

6

8

10

P
e
n

g
la

i
T

im
e

[m
s]

SGX

Penglai

Figure 6: Time consumption for reference-value deriva-
tion.

8.2. Case Study: Genann

We now present a case study integrating LATTE into
Genann [57], a minimal, well-tested open-source library
for feedforward artificial neural networks (ANN) written
in C. We first divide a Genann program into two dis-
tinct components: a trainer and a runner. The trainer is
responsible for model training using training data, whereas
the runner serves to run a model with private data for
inference. This way ensures the provision of the model to
only trusted parties while safeguarding the data privacy
of both involved parties. The key lies in the necessity
for mutual attestation between the trainer and the runner
when the latter requests the well-trained model from the
former and the former needs to attest the latter’s identity
for releasing the model.

To accomplish this, we compiled both the trainer and
the runner to WASM, incorporated lib_latte attesta-
tion APIs, and executed them using WAMR integrated
with LATTE. Our tests involved running two portable
payloads (i.e., the trainer and runner) on two potential
heterogeneous TEE platforms (i.e., SGX and Penglai), re-
sulting in four scenarios: SGX-Penglai (indicating running
the trainer on SGX and the runner on Penglai), Penglai-
SGX, SGX-SGX, and Penglai-Penglai. In all cases, the
identity and measurements of both the trainer and the
runner were successfully derived and verified through the
layered approach of LATTE, which facilitated the secure
transmission of the model to the runner.

9. Discussion

Extensions to Other TEEs. While in this paper, LATTE
is instantiated on SGX and Penglai, extending it to VM-

351

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 01,2025 at 06:18:50 UTC from IEEE Xplore. Restrictions apply.

based TEEs like AMD SEV and Intel TDX is feasi-
ble: (1) For restricted payload loading, we can reserve
the section and perform hardcoding for portable identity
straightforwardly using C macros and objcopy. Further-
more, we can incorporate the runtime code as part of the
VM image kernel so that it is included in the measure-
ment calculation. (2) For identity-measurement binding,
portable identity can be obtained directly by reading the
reserved section. The identity-measurement verification
can leverage traditional TEE attestation methods alongside
the runtime’s reference-value derivation mechanism (de-
tailed below). (3) For layered reference-value derivation,
the portable payload level is unrelated to the underlying
TEE platform. The derivation for TEE runtime is the most
challenging part. In AMD SEV and Intel TDX, measure-
ment calculation follows a process similar to SGX: it
updates the digest incrementally as pages are added to
guest memory via platform-specific calls (SNP_LAUNCH_
UPDATE for AMD SEV; SEAMCALL[TDH.MEM.PAGE.
ADD] and SEAMCALL[TDH.MEM.PAGE.EXTEND] for
Intel TDX). This allows for adjustments in the loading
order, ensuring that the reserved section is added last. By
manually performing the update process, the intermediate
hash before this section can be precomputed. Once the
intermediate hash states are obtained and the loading order
is adjusted, the final measurement can be derived using the
corresponding hash algorithms.

In conclusion, two attestation APIs in lib_latte
can be implemented without too much effort after these
modifications, enabling the extension.

Limitations on Enclave Updates. Similar to MAGE,
the use of hardcoded common parts restricts the ability
to perform online enclave updates. With MAGE, if the
content of any enclave is modified, all enclaves must
be rebuilt by developers to reflect the change. In con-
trast, LATTE ’s decoupled design ensures that updating a
portable payload requires regenerating payloads’ common
part, while runtimes avoid regenerating their own common
parts. Runtime developers are not required to modify their
runtimes; instead, the remaining steps are lightweight, lim-
ited to rebuilding associated enclaves with new portable
identities and redeploying the updated payloads. This pro-
cess could be managed by the cloud platform in the case of
confidential serverless computing. Further, updating any
TEE runtime involves regenerating the runtimes’ common
parts, redeploying the same portable payloads and rebuild-
ing associated enclaves. This means that developers of
portable payloads do not need to take any action during
TEE runtime updates, as their payloads remain unchanged.

10. Related Work

Supporting WASM on TEE. There have been existing
works on the confidential runtime to host portable appli-
cations developed in high-level language inside TEEs, and
WASM is a popular choice as the portable language/IR.
For example, TWINE [14] and WATZ [15] are two trusted
WASM runtimes on Intel SGX and ARM TrustZone,
respectively. Both of them rely on the open-source project,
WAMR [16], which is also a foundation for our work.
Enarx [17] is another open-source confidential computing

framework for running WASM applications on two TEE
platforms, i.e., Intel SGX and AMD SEV.

While all the above works focus on the problem
of supporting executing WASM in enclaves, our work,
LATTE, concentrates on an orthogonal problem of support-
ing attesting portable TEE applications in a both secure
and portable way.

The work that is most related to ours is the software-
based nested attestation scheme in WAMR [24]. It cur-
rently only supports SGX but has the potentials to be
extended to other TEE platforms. However, as mentioned
in Sec. 3.1. software-based nested attestation faces the
security issue that we aim to address with LATTE.

Cross-TEE Portability and Attestation. To alleviate
the deployment difficulties caused by the tight binding
between TEE applications and platforms, numerous efforts
have been made to detach TEE application development
from the underlying hardware and support the execution
of one application on heterogeneous TEE platforms. For
instance, vSGX [58] provides support for the execution
of SGX legacy applications on AMD SEV via virtual-
ization, while Google’s Asylo [59] and Microsoft’s Open
Enclave [60] aim at using a unified abstract enclave
model which can be mapped to various TEE backends,
and thus all applications developed with their SDKs can
be compiled and executed on heterogeneous TEE hard-
ware or even software backends. Additionally, Enarx [17]
introduces WebAssembly as the portable language and
provides a WebAssembly runtime with the support of Intel
SGX and AMD SEV. Furthermore, Komodo [61] intends
to delegate some core TEE hardware mechanisms to soft-
ware, like memory encryption. It presents a framework on
ARM TrustZone to achieve comparable security to SGX
with a formal-verified software monitor.

The above works address the problem of portable soft-
ware execution on heterogeneous TEEs. For the attestation
problem among heterogeneous enclaves, MAGE [34] en-
ables mutual attestation among enclaves without a trusted
third party. We extended it into a layered attestation ap-
proach that ensures security while maintaining portability
with a focus on portable TEE application attestation.

11. Conclusion

In this paper, we introduced the concept of portable
identities for identifying the same portable payloads run-
ning on heterogeneous TEE platforms. Our presented
LATTE, including three key mechanisms for layered at-
testation, achieves both security and portability to attest
portable TEE applications. To demonstrate its practicality,
we made a prototype implementation by adopting WASM
as the portable IR, WAMR as the TEE runtime, and Intel
SGX and RISC-V Penglai as representative heterogeneous
TEEs. We have also shown that the performance of LATTE
is reasonable with detailed evaluation.

Acknowledgment

We thank the anonymous reviewers for their insightful
comments. The work was partially supported by the Na-
tional Natural Science Foundation of China under Grant
No. 62472281, 62325207, and U24A20241.

352

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 01,2025 at 06:18:50 UTC from IEEE Xplore. Restrictions apply.

References

[1] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado,
G. Mainar-Ruiz, and M. Russinovich, “VC3: Trustworthy data
analytics in the cloud using SGX,” in 2015 IEEE symposium on
security and privacy. IEEE, 2015, pp. 38–54.

[2] F. Shaon, M. Kantarcioglu, Z. Lin, and L. Khan, “SGX-bigmatrix:
A practical encrypted data analytic framework with trusted pro-
cessors,” in Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, 2017, pp. 1211–1228.

[3] M. Al-Bassam, A. Sonnino, M. Król, and I. Psaras, “Airtnt: Fair
exchange payment for outsourced secure enclave computations,”
arXiv preprint arXiv:1805.06411, 2018.

[4] Y. Xiao, N. Zhang, J. Li, W. Lou, and Y. T. Hou, “Privacyguard:
Enforcing private data usage control with blockchain and attested
off-chain contract execution,” in European Symposium on Research
in Computer Security. Springer, 2020, pp. 610–629.

[5] R. Cheng, F. Zhang, J. Kos, W. He, N. Hynes, N. Johnson, A. Juels,
A. Miller, and D. Song, “Ekiden: A platform for confidentiality-
preserving, trustworthy, and performant smart contracts,” in 2019
IEEE European Symposium on Security and Privacy (EuroS&P).
IEEE, 2019, pp. 185–200.

[6] G. Ayoade, V. Karande, L. Khan, and K. Hamlen, “Decentralized
iot data management using blockchain and trusted execution envi-
ronment,” in 2018 IEEE International Conference on Information
Reuse and Integration (IRI). IEEE, 2018, pp. 15–22.

[7] O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta, S. Nowozin,
K. Vaswani, and M. Costa, “Oblivious {Multi-Party} machine
learning on trusted processors,” in 25th USENIX Security Sym-
posium (USENIX Security 16), 2016, pp. 619–636.

[8] Intel, “Intel Software Guard Extensions (Intel SGX) Services,”
https://api.portal.trustedservices.intel.com/, 2018.

[9] Intel, “Intel Trust Domain Extensions (Intel TDX),”
https://www.intel.com/content/www/us/en/developer/tools/
trust-domain-extensions/overview.html, 2023.

[10] D. Kaplan, J. Powell, and T. Woller, “AMD memory encryption,”
White paper, 2016, https://developer.amd.com/wordpress/media/
2013/12/AMD Memory Encryption Whitepaper v7-Public.pdf.

[11] Arm, “Arm Confidential Compute Architecture(Arm CCA),”
2021. [Online]. Available: https://www.arm.com/architecture/
security-features/arm-confidential-compute-architecture

[12] E. Feng, X. Lu, D. Du, B. Yang, X. Jiang, Y. Xia, B. Zang, and
H. Chen, “Scalable memory protection in the {PENGLAI} en-
clave,” in 15th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 21), 2021, pp. 275–294.

[13] D. Lee, D. Kohlbrenner, S. Shinde, K. Asanović, and D. Song,
“Keystone: An open framework for architecting trusted execution
environments,” in Proceedings of the Fifteenth European Confer-
ence on Computer Systems, 2020, pp. 1–16.

[14] J. Ménétrey, M. Pasin, P. Felber, and V. Schiavoni, “Twine: An
embedded trusted runtime for webassembly,” in 2021 IEEE 37th
International Conference on Data Engineering (ICDE), 2021, pp.
205–216.

[15] J. Ménétrey, M. Pasin, P. Felber, and V. Schiavoni, “Watz: a
trusted webassembly runtime environment with remote attestation
for trustzone,” in 2022 IEEE 42nd International Conference on
Distributed Computing Systems (ICDCS). IEEE, 2022, pp. 1177–
1189.

[16] B. Alliance, “WebAssembly Micro Runtime,” 2023.
[Online]. Available: https://github.com/bytecodealliance/
wasm-micro-runtime

[17] Enarx, “Enarx,” 2023, accessed on 16/1/2023. [Online]. Available:
https://enarx.dev/

[18] W. C. Group, “Webassembly,” 2022, accessed on 13/1/2023.
[Online]. Available: https://webassembly.github.io/spec/core/intro/
introduction.html

[19] F. Alder, N. Asokan, A. Kurnikov, A. Paverd, and M. Steiner, “S-
faas: Trustworthy and accountable function-as-a-service using intel
SGX,” in Proceedings of the 2019 ACM SIGSAC Conference on
Cloud Computing Security Workshop, 2019, pp. 185–199.

[20] W. Qiang, Z. Dong, and H. Jin, “Se-lambda: Securing privacy-
sensitive serverless applications using SGX enclave,” in Inter-
national Conference on Security and Privacy in Communication
Systems. Springer, 2018, pp. 451–470.

[21] D. Goltzsche, M. Nieke, T. Knauth, and R. Kapitza, “Acctee:
A webassembly-based two-way sandbox for trusted resource ac-
counting,” in Proceedings of the 20th International Middleware
Conference, 2019, pp. 123–135.

[22] S. Zhao, P. Xu, G. Chen, M. Zhang, Y. Zhang, and Z. Lin,
“Reusable enclaves for confidential serverless computing,” in 32nd
USENIX Security Symposium (USENIX Security 23), 2023, pp.
4015–4032.

[23] T. C. Group, “Attestation architecture — trusted computing
group,” accessed on 05/2/2023. [Online]. Available: https:
//trustedcomputinggroup.org/resource/dice-attestation-architecture/

[24] B. Alliance, “WebAssembly Micro Runtime Improved Attestation
Scheme,” 2023, accessed on 17/1/2023. [Online]. Available: https:
//github.com/bytecodealliance/wasm-micro-runtime/pull/1695

[25] Enarx, “Enarx,” 2024, accessed on 09/4/2024. [Online]. Available:
https://hackmd.io/@enarx/rJ55urrvo

[26] “CVE-2023-26489.” Available from MITRE, CVE-ID CVE-2023-
26489., Feb. 23 2023. [Online]. Available: https://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2023-26489

[27] V. Costan and S. Devadas, “Intel SGX explained,” Cryptology
ePrint Archive, 2016.

[28] F. Bellard, “QEMU, a fast and portable dynamic translator.” in
USENIX annual technical conference, FREENIX Track, vol. 41.
Califor-nia, USA, 2005, p. 46.

[29] S. Johnson, V. Scarlata, C. Rozas, E. Brickell, and F. Mckeen,
“Intel software guard extensions: EPID provisioning and attestation
services,” White Paper, vol. 1, no. 1-10, p. 119, 2016.

[30] X. Wang and H. Yu, “SM3 cryptographic hash algorithm,” Journal
of Information Security Research, vol. 11, pp. 983–994, 2016.

[31] the International Organization for Standardization and the Inter-
national Electrotechnical Commission, “IT Security Techniques
— Hash-functions — Part 3: Dedicated hash-functions,” https:
//www.iso.org/standard/67116.html, 2019.

[32] X. Zheng, X. Hu, J. Zhang, J. Yang, S. Cai, and X. Xiong, “An
efficient and low-power design of the SM3 hash algorithm for IoT,”
Electronics, vol. 8, no. 9, p. 1033, 2019.

[33] H. Birkholz, D. Thaler, M. Richardson, N. Smith, and W. Pan,
“RFC 9334: Remote ATtestation procedureS (RATS) Architecture,”
2023.

[34] G. Chen and Y. Zhang, “{MAGE}: Mutual attestation for a group
of enclaves without trusted third parties,” in 31st USENIX Security
Symposium (USENIX Security 22), 2022, pp. 4095–4110.

[35] Wasmer Community Group, “Wasmer,” 2023. [Online]. Available:
https://github.com/wasmerio/wasmer

[36] Bytecode Alliance, “wasmtime,” 2023. [Online]. Available:
https://github.com/bytecodealliance/wasmtime

[37] Enarx, “Enarx drawbridge,” 2024, accessed on 21/4/2024. [Online].
Available: https://github.com/enarx/drawbridge

[38] “CVE-2023-2136.” Available from MITRE, CVE-ID CVE-2023-
2136., 17 2023. [Online]. Available: https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2023-2136

[39] “CVE-2023-26919.” Available from MITRE, CVE-ID CVE-2023-
26919., Feb. 27 2023. [Online]. Available: https://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2023-26919

[40] “CVE-2023-32314.” Available from MITRE, CVE-ID CVE-2023-
32314., May 08 2023. [Online]. Available: https://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2023-32314

[41] W. Wang, G. Chen, X. Pan, Y. Zhang, X. Wang, V. Bindschaedler,
H. Tang, and C. A. Gunter, “Leaky cauldron on the dark land:
Understanding memory side-channel hazards in SGX,” in Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, 2017, pp. 2421–2434.

353

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 01,2025 at 06:18:50 UTC from IEEE Xplore. Restrictions apply.

[42] M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard,
“Malware guard extension: Using SGX to conceal cache attacks,”
in International Conference on Detection of Intrusions and Mal-
ware, and Vulnerability Assessment. Springer, 2017.

[43] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Capkun,
and A.-R. Sadeghi, “Software grand exposure: SGX cache attacks
are practical,” in 11th USENIX workshop on offensive technologies
(WOOT 17), 2017.

[44] M. Hähnel, W. Cui, and M. Peinado, “{High-Resolution} side
channels for untrusted operating systems,” in 2017 USENIX Annual
Technical Conference (USENIX ATC 17), 2017, pp. 299–312.

[45] J. Götzfried, M. Eckert, S. Schinzel, and T. Müller, “Cache attacks
on intel SGX,” in Proceedings of the 10th European Workshop on
Systems Security, 2017, pp. 1–6.

[46] S. Lee, M.-W. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado,
“Inferring fine-grained control flow inside SGX enclaves with
branch shadowing,” in 26th USENIX Security Symposium (USENIX
Security 17), 2017, pp. 557–574.

[47] J. Van Bulck, N. Weichbrodt, R. Kapitza, F. Piessens, and
R. Strackx, “Telling your secrets without page faults: Stealthy page
{Table-Based} attacks on enclaved execution,” in 26th USENIX
Security Symposium (USENIX Security 17), 2017, pp. 1041–1056.

[48] Y. Xu, W. Cui, and M. Peinado, “Controlled-channel attacks:
Deterministic side channels for untrusted operating systems,” in
2015 IEEE Symposium on Security and Privacy (SP). IEEE,
2015, pp. 640–656.

[49] S. Shinde, Z. L. Chua, V. Narayanan, and P. Saxena, “Prevent-
ing page faults from telling your secrets,” in Proceedings of the
11th ACM on Asia Conference on Computer and Communications
Security, 2016, pp. 317–328.

[50] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci,
F. Piessens, M. Silberstein, T. F. Wenisch, Y. Yarom, and
R. Strackx, “Foreshadow: Extracting the keys to the intel
{SGX} kingdom with transient {Out-of-Order} execution,” in 27th
USENIX Security Symposium (USENIX Security 18), 2018, pp.
991–1008.

[51] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai, “SGX-
pectre: Stealing intel secrets from SGX enclaves via speculative
execution,” in 2019 IEEE European Symposium on Security and
Privacy (EuroS&P). IEEE, 2019, pp. 142–157.

[52] S. Van Schaik, A. Milburn, S. Österlund, P. Frigo, G. Maisuradze,
K. Razavi, H. Bos, and C. Giuffrida, “RIDL: Rogue in-flight data
load,” in 2019 IEEE Symposium on Security and Privacy (SP).
IEEE, 2019, pp. 88–105.

[53] M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina,
T. Prescher, and D. Gruss, “ZombieLoad: Cross-privilege-boundary
data sampling,” in Proceedings of the 2019 ACM SIGSAC Confer-
ence on Computer and Communications Security, 2019, pp. 753–
768.

[54] C. Canella, D. Genkin, L. Giner, D. Gruss, M. Lipp, M. Minkin,
D. Moghimi, F. Piessens, M. Schwarz, B. Sunar, J. Van Bulck, and
Y. Yarom, “Fallout: Leaking Data on Meltdown-Resistant CPUs.”
New York, NY, USA: Association for Computing Machinery, 2019,
p. 769–784.

[55] E. Barker, W. Barker, W. Burr, W. Polk, and M. Smid, “Secure
hash standard (shs),” Federal Information Processing Standards
Publications, Aug 2015.

[56] OpenSSL, “OpenSSL,” 2024, accessed on 27/4/2024. [Online].
Available: https://github.com/openssl/openssl

[57] Lewis Van Winkle, “Genann,” 2020. [Online]. Available: https:
//github.com/codeplea/genann

[58] S. Zhao, M. Li, Y. Zhangyz, and Z. Lin, “vSGX: Virtualizing SGX
enclaves on AMD SEV,” in 2022 IEEE Symposium on Security and
Privacy (SP). IEEE, 2022, pp. 321–336.

[59] Google, “Asylo,” 2022, accessed on 29/1/2023. [Online]. Available:
https://asylo.dev/

[60] O. Enclave, “Open Enclave SDK,” 2023, accessed on 29/1/2023.
[Online]. Available: https://openenclave.io/sdk/

[61] A. Ferraiuolo, A. Baumann, C. Hawblitzel, and B. Parno, “Ko-
modo: Using verification to disentangle secure-enclave hardware
from software,” in Proceedings of the 26th Symposium on Operat-
ing Systems Principles, 2017, pp. 287–305.

Appendix A.
Cryptographic Hash Function

A cryptographic hash function, represented as H, is
a mathematical function used to map data of arbitrary
size (usually called message) to a value with fixed size
(usually called digest). The function must be deterministic,
meaning that it will always generate the same output with
the same input. Besides, when it is used as a cryptog-
raphy tool, it is desired to be preimage resistant, which
means that given an output, it should be computationally
infeasible to get its original input.

More precisely, the hash function computation runs
by the following steps. First, the inputs are padded to
several ordered fix-length blocks as I(1)∥ · · · ∥I(N). Then
the hash function operates in three steps, the initialization
step Hinit, the update step Hupd, and the finalization step
Hfin. Each step maintains a hash state H representing
necessary information for generating the final digest, in-
cluding the intermediate hash value and processed block
count.

The hash initialization starts from a fixed initial hash
state H(0):

H(0) = Hinit()

In the hash update stage, the hash update function Hupd

takes as input the previous hash state H(i−1) and a single
block of input I(i), and outputs the updated hash state
H(i). The process repeats multiple times until no input
block is left:

H(i) = Hupd(I
(i), H(i−1)), 0 < i ≤ N

The hash finalization takes as input the last hash state
H(N) from the hash update Hupd, and outputs the final
hash digest. Therefore, the hash function workflow is as
follows:

H(I) =Hfin(H
(N))

=Hfin(Hupd(I
(N),Hupd(· · ·Hupd(I

(1),Hinit()))))

Since the hash calculation process is sequential, know-
ing the intermediate hash state and the remaining unpro-
cessed blocks is enough to derive the final hash digest.
For convenience, we abuse the notation of H to represent
two cases, i.e., calculating from the start or from an
intermediate state H

(Lpre)
pre , as follows:

H(Iremain, H
(Lpre)
pre)

=Hfin(Hupd(I
(N),Hupd(· · ·Hupd(I

(Lpre+1), H(Lpre)
pre))))

=H(I)

where Iremain = I(Lpre+1)∥ · · · ∥I(N), H
(Lpre)
pre =

Hupd(I
(Lpre), Hupd(· · ·Hupd(I

(1),Hinit()))).

Appendix B.
Data Availability

Our implementation has been open-sourced at https:
//github.com/Jiax-cn/latte, which can be reproduced on
machines with SGX support. Penglai-related implemen-
tations and experiments can be conducted using QEMU
and the corresponding Penglai toolchain.

354

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 01,2025 at 06:18:50 UTC from IEEE Xplore. Restrictions apply.

