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Abstract—Various anonymity methods have been proposed to
safeguard the privacy of human mobility trajectories, ranging
from trajectory anonymity that uses a fixed pseudonym to lo-
cation anonymity which involves using different pseudonyms for
each location. While location anonymity appears to offer robust
privacy protection, there is growing concern that trajectories can
still be reconstructed even if this method is deployed. Due to
the lack of evaluations on real-world systems utilizing location
anonymity, its practical effectiveness remains uncertain.

Two popular takeout platforms, Ele.me and Meituan, which
have adopted location anonymity to protect riders’ trajectories,
provide a suitable environment for such real-world evalua-
tions. We design a large-scale data collection system to gather
anonymized location data of riders, creating two anonymized
datasets containing millions of riders’ locations. Then we propose
an innovative multi-stage trajectory inference framework specif-
ically tailored to location anonymity, containing location linking
stage for short-term tracking and segment matching stage for
long-term tracking. Extensive evaluations refute the effectiveness
of location anonymity for short-term tracking (achieving 83.4%
and 74.5% inference accuracy on Ele.me and Meituan) but
confirm its utility for long-term tracking. Analysis highlights the
crucial role of strong aggregation properties of riders, previously
deemed unrealistic across multiple scenarios, in thwarting long-
term tracking.

Index Terms—Location anonymity, Large-scale data collection,
Multi-stage trajectory inference attack, Real-world evaluations

I. INTRODUCTION

In recent decades, location-based services (LBSs) have

become an essential component of numerous applications,

including showing nearby users in mobile social networks [1],

location tracking in fitness tracking social networks [2], and

displaying nearby cars in ride-hailing services [3]. Typically,

users’ locations will be continuously or intermittently used.

Frequent location privacy leakage events make users pay more

attention to the usage of their location data, especially in con-

tinuous location services. The previous works have performed

a comprehensive privacy analysis on different location-based

services and pointed out that they suffer from a wide range

of location privacy attacks, which can result in the loss of

sensitive data such as the top locations (e.g., office and home)

and the moving trajectories [4], [5], [6], [7], [8].

A wide variety of location privacy-preserving approaches

have been proposed to protect users’ privacy [9]. Obfuscating

locations to prevent the leakage of real locations is a key

direction, such as location generalization (e.g., cloaking) and

location perturbation (e.g., differential privacy) [10], [11], [12],

[13], [14]. Over time, these techniques have evolved from

manually setting the simple rules to adding random noises

with strict privacy guarantees.

However, for many real-world location-based applications,

especially continuous ones, imprecise locations via obfus-

cation are not feasible due to the high accuracy require-

ments of location data. For such location-based applications

which need real locations, anonymizing locations by remov-

ing/changing real IDs to prevent trajectory inference is a

viable approach [15], [16], [17], [18], [19], [20]. Various

anonymity methods have been proposed to protect human

mobility trajectories, ranging from trajectory anonymity (using

a fixed pseudonym for the whole trajectory) [16], [18] to

location anonymity (using different pseudonyms for each

location) [21], [22], [23]. The location anonymity seems to

be a robust privacy-preserving technology, where an entire

trajectory is segmented into distinct locations, each assigned

a unique pseudonym.

In recent years, concerns have grown that trajectories can

still be reconstructed even if location anonymity is deployed.

To comprehend this risk, several attack algorithms have been

proposed [23], [24], [25]. Some studies even claim nearly

100% recovery accuracy, raising doubts about the effectiveness

of location anonymity. However, these attack algorithms have

only been validated on simulated datasets generated by simu-

lated tools (e.g., SUMO). Due to the absence of evaluations
on real-world systems, it remain unanswered that whether
these simulation results still hold in real world.

In this paper, we conduct the first real-world study on

the effectiveness of location anonymity. One key observation

is that emerging online takeout platforms offer a suitable

environment for such real-world evaluations. Typically, a take-

out service ecosystem consists of multiple interest groups,

namely Consumer, Merchant, Rider, and Takeout Platform.



As depicted in Fig. 1, mainstream takeout platforms, such as

Meituan, Ele.me, Uber Eats, and Gojek, incorporate a feature

that displays the real-time locations of nearby riders, known as

the nearby riders feature. Through reverse engineering of the

nearby riders APIs, we discovered that two largest platforms,

Meituan and Ele.me, have adopted location anonymity to safe-

guard riders’ trajectories. For the consumer-specified location,

these two platforms display the number of nearby riders and

their real-time GPS coordinates, excluding their real IDs. It is

akin to changing pseudonyms every time a rider’s location is

displayed, i.e., using location anonymity.

We firstly design a large-scale data collection system to

gather anonymized location data of riders from Ele.me and

Meituan for real-world evaluations. Achieving this is challeng-

ing, as these platforms conceal the details of nearby riders API,

implement anti-collection measures, and restrict the amount

of data collected by single collector. To overcome these chal-

lenges, we designed a large-scale data collection system with

modules of Nearby Riders API Pinpointing and Parsing, Anti-
collection Mechanisms Bypassing, and Parallel Collection.

Using this system, we collected anonymized location data of

riders from Ele.me and Meituan within a 4.5km x 9km area,

lasting for 14 days for ele.me and 8 days for meituan, forming

two anonymized datasets containing millions of riders’ loca-

tions. Additionally, to collect labelled datasets (ground-truth

datasets), we randomly recruited 20 Ele.me and 8 Meituan

riders in our experimental area, recording their trajectories.

The anonymized datasets and ground-truth datasets present an

occasion for comprehensively evaluating the effectiveness of

location anonymity in practice.

Our preliminary analysis reveals that some key factors, such

as indoor positioning deviation and movement randomness of

riders within gathering areas (e.g., shopping centers), make

massive riders’ trajectories appear messy in these areas (as

shown in Fig. 2). This leads to existing trajectory inference

algorithms, which only rely on the correlation of locations

in adjacent time slots, fail to accomplish the inference task

for massive riders with messy trajectories. To address this,

we propose an innovative multi-stage trajectory inference

attack specifically tailored to location anonymity. We treat the

gathering area as a blackbox where locations are ignored and

divide the trajectory inference task into multiple stages. First,

we propose a location linking algorithm that associates loca-

tions belonging to the same rider by constructing reasonable

transition probability matrix. The algorithm stops linking if a

rider enters the gathering area, generating multiple segments

of a rider’s trajectory instead of the full trajectory. Then,

we further design a segment matching algorithm to identify

segments belongs to the same rider through feature comparison

of segments, enabling cross-gathering area tracking.

We initially assess the performance of location anonymity

using static metrics (e.g., mix set), followed by evaluations

conducted through the proposed multi-stage trajectory in-

ference attack, to form the comprehensive evaluations. We

give the concrete definition of the mix set in the context of

location anonymity, and calculate the mix ability under various

situations. Experimental results indicate that 89.3% of riders’

locations have at least one mix neighbor, and even 15.6%
locations have at least nine mix neighbors. Then we implement

the proposed multi-stage trajectory inference attack on the

anonymized datasets and conduct extensive evaluations. The

results refute the effectiveness of location anonymity for short-

term tracking (achieving 83.4% and 74.5% inference accuracy

on Ele.me and Meituan) but confirm its utility for long-term

tracking. Experimental analysis reveals that strong aggregation

properties of riders formed by the characteristics of takeout

services (riders need to frequently enter and exit gathering

areas for picking up goods), previously deemed unrealistic

across multiple scenarios, play a crucial role in thwarting long-

term tracking, providing valuable insights for location privacy

protection.

The contributions of our study include:

• Large-scale data collection system: We design a large-

scale data collection system to gather anonymized lo-

cations of riders from Ele.me and Meituan, resulting in

two anonymized datasets comprising millions of riders’

locations.

• Multi-stage trajectory inference attack: We propose

a multi-stage trajectory inference attack, which incorpo-

rates a location linking stage that associates locations

belonging to the same rider to form multiple segments

outside the gathering area, as well as a segment matching

stage to find segments belongs to the same rider.

• Measurement and Evaluation: We assess the perfor-

mance of location anonymity using static metrics and the

proposed multi-stage trajectory inference attack, to form

a comprehensive evaluation. Extensive evaluations refute

the effectiveness of location anonymity for short-term

tracking but confirm its utility for long-term tracking.

The remainder of this paper is organized as follows. Sec. II

introduces the background. Sec. III describes the large-scale

data collection system. Sec. IV and Sec. V present the pro-

posed attack and evaluation results. We discuss the related

work and conclude this paper in Sec. VI and Sec. VII.

II. OVERVIEW OF TAKEOUT SERVICES

The takeout service market has experienced substantial

growth in the past five years. According to the statistics, China

leads with the largest user base and market penetration. Driven

by huge economic benefits in takeout service market, many

takeout platforms have been founded, including Uber Eats,

Ele.me, and Meituan.

Nearby riders feature. A takeout service ecosystem typ-

ically includes multiple interest groups, including Consumer,

Merchant, Rider, and Takeout Platform. Delivery riders are

an important part of the online to offline pattern. A rider

will jointly consider the locations of all users (merchants and

consumers) to choose the shortest delivery path. To demon-

strate the service capabilities, mainstream takeout platforms

incorporate a nearby riders feature on their consumer apps

that displays the real-time locations of nearby riders.



  Get /nearby-riders?
  

HTTP/1.1 200 OK
Content-type: application/json, test/plain
...
{
 “total”:20,
 “list”:[

     ...
 ],
 “takeorder_seconds”:60,
 “errmsg”:””
}

Riders’ locations

Customer’s location

HTTP/1.1
retrofit_exec_time:1600 48324
...

{“lat”: .031552,“lng”: .273233},
{“lat”: .029097,“lng”: .276579},
{“lat”: .029167,“lng”: .276719},

lat= .019& lng= . 441&__skcy=8Ntv g u7n%3D

Authentication

Fig. 1: An example of nearby riders display

Takeout platforms vary in displaying nearby riders due to

regional population density and user preferences. In Europe,

the display of nearby riders is restricted due to strict privacy

regulations. In the United States, some platforms (e.g., Uber

Eats) offer a brief history path of riders. In Asia, two largest

takeout platforms in the world (i.e., Meituan and Ele.me)

reveal the real-time GPS coordinates of nearby riders.

Fig. 1 illustrates an example of the nearby riders feature

available on Ele.me and Meituan. When a consumer specifies

a location on the consumer app, the information of nearby

delivery riders who could provide services to the consumer

within a fixed time will be displayed, including the total

number of nearby riders and their GPS coordinates without

real IDs.

III. LARGE-SCALE DATA COLLECTION SYSTEM

In this section, we outline the method for large-scale

data collection using Nearby Riders APIs and present the

datasets collected from two takeout platforms (i.e., Ele.me and

Meituan), which could be used for the real-world evaluations

of location anonymity. It is not trivial to achieve large-

scale data collection from these platforms due to following

challenges:

• Undocumented APIs. Contrary to system APIs that pro-

vide detailed explanations, takeout platforms do not dis-

close any information about the specifics of the Nearby

Riders APIs, which increases the difficulty of actively

performing Nearby Riders API calls to obtain data from

designated locations.

• Anti-collection Mechanisms. Like other service providers,

takeout platforms also implemented some anti-collection

mechanisms on the Nearby Riders APIs to prevent attackers

from disrupting the operation of the platforms.

• Selective Responses. Platforms also impose restrictions on

the amount of data that a single collector can obtain, such

as setting maximum search radius and limiting the number

of displayed nearby riders.

A. System Design

To solve the above challenges, we propose a large-scale data

collection system consisting of three modules: the Nearby Rid-

ers API Pinpointing and Parsing, Anti-collection Mechanisms

Bypassing, and Parallel Collection.

1) The Nearby Riders API Pinpointing and Parsing: To

solve the first challenge (i.e., undocumented APIs), we pin-

point Nearby Riders APIs from massive request and response

messages. Firstly, we change the location on the consumer

app to trigger Nearby Riders API calls, and use an analysis

tool, “Packet Capture”, to capture all messages between the

consumer app and takeout platform. Then we search for

related messages of Nearby Riders API based on the following

observations: the request message contains consumer-specified

location, and the response message of Nearby Riders API

contains a series of GPS coordinates. For the convenience of

pinpointing, we halt all other actions on the app except for

changing locations.

Through parsing the related messages of Nearby Riders API

based on special characters (e.g., &), we discovered that a

request message mainly contains the request URL, consumer’

location, and authentication field, while a response message

mainly contains the number of displayed nearby riders, GPS

coordinates of riders, and estimated time for order pickup.

2) Anti-collection Mechanisms Bypassing: After multiple

attempts, we have identified some anti-collection mechanisms

used to block or slow down requests from non-consumer

groups. We will discuss methods for bypassing these mecha-

nisms to execute Nearby Riders API calls with spoofed GPS

coordinates.

Bypassing Authentication. The first mechanism employed

by takeout platforms is authentication, which restricts access

to the Nearby Riders APIs to authenticated consumers only.

Through in-depth analysis of the authentication field in request

messages, we have identified two types of authentication

mechanisms adopted by takeout platforms:

• Location-independent authentication. Ele.me adopts the

location-independent authentication. A cookie will be

served as a mean of authentication for subsequent HTTP

requests (including Nearby Riders API). Since cookie-

based authentication is independent of current status of

consumers (e.g., consumers’ locations), attackers could

obtain valid cookies to continuously perform Nearby Riders

API calls with spoofed GPS coordinates. Notably, cookies

did not expire when userid is set to 0, significantly reducing

the difficulty for attackers.

• Location-dependent authentication. Meituan employs

location-dependent authentication, generating unique
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Fig. 2: A rider’s route passing through different areas

signatures for each location and adding them to the

authentication filed, to check the consistency of the

locations in the signatures and the consumer-specified

locations. Through decompiling Meituan APK, we

discovered that a signature can be generated by passing

the consumer’s location, client key, and UUID to the

get signature function. Since the libmtguard.so file called

by this function uses some unknown parameters which are

protected by code obfuscation, it is difficult to forge valid

signatures for spoofed locations. Despite Meituan adopts a

stronger authentication mechanism, we have still identified

overlooked vulnerabilities that can be used to bypass it.

Since the consistency checking mechanism does not verify

timestamps in signatures, we can obtain valid signatures

for designated locations by moving a consumer’s location

to those locations and parsing captured messages. These

valid signatures can then be reused for subsequent data

collection.

Bypassing Rate Limiting. Rate limiting is commonly used

as a countermeasure against DoS attacks [3]. Based on our

testing, platforms implements rate limiting by recording the

number of requests from each IP and blocking requests when

the limit is reached. To perform multiple Nearby Riders API

calls simultaneously, we use dynamic IP addresses to avoid

triggering rate limiting.

3) Parallel Collection: Using above steps, an attacker can

obtain nearby riders’ locations of designated locations. How-

ever, due to the following limitations, we needs to set multiple

collectors at different locations and simultaneously perform

API calls for achieving data collection in a large area.

• Displaying Locations of Partial Nearby Riders: To

prevent attackers from abusing the near riders feature,

these takeout platforms limit the number of displayed GPS

coordinates. Upon reviewing the response messages, we

discover that Ele.me platform shows the actual number

of nearby riders around the consumer-specified location,

but displays GPS coordinates of no more than 20 of these

nearby riders, while Meituan platform limits the display of

GPS coordinates to 15 riders.

• Setting Maximum Search Radius: Takeout platforms

also set a maximum search radius for Nearby Riders API

calls. To verify the maximum search radius, we performed

Nearby Riders API calls with spoofed GPS coordinates

(i.e., consumer-specified locations) and stored locations of

nearby riders of a spoofed GPS coordinate as a nearby

riders record. The data collection process lasted for one day.

Then we selected records that did not trigger the limit on

the number of nearby riders, and computed the maximum

distance between consumer-specified locations and the GPS

coordinates of their nearby riders. Experimental results

show that maximum search radius is 3km for Ele.me and

5km for Meituan.

• Displaying Locations of Nearby Riders Randomly:
Takeout platforms randomly select nearby riders for display

when the number of nearby riders exceeds the limit, rather

than following a certain rule (e.g., shortest distance). We

designed two experiments to verify this: one consumer

sends two API requests with the same location simulta-

neously, and two consumers send one identical request

simultaneously. We conducted experiments on 30 GPS

coordinates, lasting for ten minutes. Through analyzing

nearby riders records at the same time and location, we

found that they contain different GPS coordinates. For

collected data from Ele.me, the similarities of nearby riders

records at the same time and location are 67.70% and

37.39% in two experiments. For Meituan, because the

format of request packets are not applicable to different

consumers, we only conducted the first experiment, indi-

cating a similarity of only 26.75%.

Due to the above mechanisms, we need to deploy multiple

collectors to gather riders’ data in a large area, by simultane-

ously and continuously performing API calls. Since takeout

platforms set the maximum search radius, a straightforward

way of deploying collectors is to divide the large area into

many sub-grids with an edge length of 2 × maximum radius,

and place collectors in the center of each sub-grid. However,

takeout platforms also limit the number of displayed GPS

coordinates of nearby riders and randomly display nearby

riders, which may lead to missing riders’ location data if using

this edge length. To collect more data, redundant collectors are

necessary. To obtain the appropriate edge length, we varied the

edge length from 100m to 1, 000m and collected data for one

day in a 5km× 5km area. Experimental results show that we

could collect most data with an edge length of 300m (Ele.me)

and 150m (Meituan).



B. Data Corpus

To evaluate the performance of the location anonymity

method in practice, we conducted long-term data collection

to form the large-scale and high quality datasets.

Data collection system deployment. Based on survey infor-

mation from some riders, the typical delivery range (or activity

range) of riders is centered at a rider-specified location, usually

a shopping mall. Therefore, we chose an area with dimensions

of 4.5km×9km, centered around a prosperous shopping mall,

for large-scale data collection, which is sufficient to cover the

trajectories of the riders surrounding the shopping mall.

Using the methodology outlined in Sec. III-A, we divided

the large area into many sub-grids and positioned collectors

at the center of each grid. Once deployed, these collectors

began gathering data at a consistent request rate. For Ele.me,

we discovered that cookies do not expire when userid is

set to 0, allowing us to use a valid cookie for continuously

performing API calls with spoofed GPS coordinates. In the

case of Meituan, we need to collect signatures of designated

locations of collectors in advance.

Anonymized Datasets: We collected anonymized location data

of riders from Ele.me and Meituan over 14 days and 8 days,

respectively. Due to duplication of some data collected by ad-

jacent collectors at the same time, we removed these duplicates

before aggregating the data into the format: <timestamp, GPS

coordinates set>. This process resulted in two anonymized

datasets, containing millions of riders’ locations.

Ground-truth Datasets: Meanwhile, to verify the correctness

of our trajectory inference algorithms, we recruited 20 riders

from Ele.me and 8 riders from Meituan within our experi-

mental area. Each volunteer carried a GPS-tracking device to

record their trajectories. We have obtained authorization from

our university for these experiments.

IV. MULTI-STAGE TRAJECTORY INFERENCE ATTACK

In this section, we define the threat model to describe the

ability of the adversary, and design a multi-stage inference

attack for further evaluating the performance of the location

privacy protection achieved by location anonymity.

A. Threat model

In our attack framework, the adversary seeks to reconstruct

riders’ trajectories from anonymized locations, which can be

regarded as a multiple-target tracking problem. Specifically,

a variable number of riders move within a given area, and

their locations are displayed at irregular intervals. A snapshot

of multiple riders’ locations at time slot t is defined as a

set Lt = {lt1, lt2, lt3, ...}, where lti denotes a rider’s location

at time slot t. The trajectory inference algorithm associates

these locations with subsequent anonymized locations to form

appropriate trajectories, i.e., sequences of locations belong to

the same rider.

As depicted in Fig. 2, a rider’s trajectory is messy in the

gathering area (e.g., shopping centers), which is caused by

the following reasons: 1) GPS accuracy diminishes within

buildings, and 2) riders often move irregularly to pick up

multiple orders. Thus, it is difficult to recover a rider’s

trajectory from massive riders with messy trajectories in the

gathering area. Therefore, we consider a multi-stage trajectory

inference attack by regarding gathering area as a blackbox

where locations are ignored, and dividing the inference process

into multiple stages.

In the first stage, the adversary aims to link locations in

Lt with locations in subsequent anonymized location sets

to form appropriate sub-trajectories, composed of locations

belonging to a rider. The linking process stops if a rider

enters the gathering area. With these steps, the adversary

could recover riders’ sub-trajectories (i.e., segments) outside

gathering areas. In the second stage, the adversary will link

sub-trajectories of entering and exiting gathering area. Let

Train = {trat1in1
, trat2in2

, · · · } be sub-trajectories of entering

a gathering area and Traout = {trak1
out1 , tra

k2
out2 , · · · } be sub-

trajectories of exiting a gathering area, where ti and kj rep-

resents entering and exiting times. In this stage, the adversary

wants to find sub-trajectory pairs of the same rider, including

an entering sub-trajectory and an exiting sub-trajectory.

B. Attack Framework

Given the challenge of reconstructing a rider’s trajectory

from massive riders with disorganized trajectories in the

gathering areas (such as shopping malls), we propose an

innovative multi-stage inference attack specifically tailored

to address these challenges, as shown in Fig. 3. Firstly, we

propose a location linking algorithm that associates locations

belonging to the same rider by constructing reasonable tran-

sition probability matrix, and stops location linking if a rider

enters the gathering area. Due to ignoring rider’s locations

in the gathering areas, we could only generate multiple sub-

trajectories (segments) for riders instead of the entire trajectory

of them. To address this, we further design a segment matching

algorithm to identify sub-trajectories belongs to a same rider

by feature comparison.

1) Location Linking Algorithm for Non-gathering areas:
In this stage, the adversary focuses solely on locations out-

side gathering areas. Firstly, the adversary link the locations

in Lt with those in subsequent anonymized location sets

Lt+{1,...,Δt} = {Lt+1, . . . , Lt+Δt}, which can be modeled

as constructing a weighted bipartite graph. Each edge is

weighted based on the probability that a location lti and a

subsequent location l
t+{1,...,Δt}
j ∈ Lt+{1,...,Δt} belong to the

same rider. We consider the Δt subsequent anonymity location

sets simultaneously to accommodate situations where riders

may disappear for some time slots. Therefore, the adversary

needs to calculate the probability matrix At→t+{1,...,Δt} =

{at→t+{1,...,Δt}
ij }m×n, where a

t→t+{1,...,Δt}
ij represents the

the probability that a location lti and a subsequent location

l
t+{1,...,Δt}
j belong to the same rider. Consequently, this prob-

lem is transformed into how to accurately build the transition

probability matrix At→t+{1,...,Δt}.



The continuity of human mobility could make us estimate

the next location by using the current location [26], [27]. We

build the mobility model as follows:

dt+k
i = ‖lti − lt−1

i ‖ × k, k ∈ {1, 2, . . . ,Δt} (1)

where dt+k
i represents the theoretical distance that rider i

moves from the time slot t to the time slot t+ k, and ‖.‖
represents the distance traveled within a time slot, which is

computed by historical average speed. Based on the theoretical

moving distance, we can calculate the subsequent theoretical

locations for each time slot. For each subsequent location lt+k
j ,

where k ∈ {1, . . . ,Δt}, if the distance between lt+k
j and lti

exceeds Δdmax × k (Δdmax is the maximum movement dis-

tance within a time slot), the transition probability at→t+k
ij will

be set to zero. For other locations that satisfy the maximum

distance limit, we can calculate the distance between them

and the subsequent theoretical locations, and set the transition

probability at→t+k
ij based on the following rule: The smaller

the distance, the higher the transition probability.

When analyzing the ground-truth data of riders, we observed

that the probability of the same location appearing within

adjacent time slots belongs to different riders is very low.

Therefore, if a location identical to lti exists in Lt+{1,...,Δt},

we assign a transition probability of one to it and set the rest to

zero. For each location l
t+{1,...,Δt}
j where a

t→t+{1,...,Δt}
ij �= 0,

we record the linkage between the location l
t+{1,...,Δt}
j and

lti , and continually execute the location linking algorithm by

setting the location l
t+{1,...,Δt}
j as the current location. If a

location l
t+{1,...,Δt}
j is not selected as the subsequent location

of a trajectory, it will be regarded as the starting location of a

new trajectory.

By following the aforementioned steps, the adversary could

acquire numerous segments (i.e., sub-trajectories). Since we

record all possible location linkages, some of these segments

may share the same starting location. Therefore, for all seg-

ments having the same starting location, we calculate the

segment probabilities based on the transition probabilities of

location linkage within a segment and only retain the segment

with the highest probability.

By utilizing the location linking algorithm, we can generate

a substantial number of trajectories. To minimize computa-

tional costs, we analyzed both the recovered trajectories and

the actual trajectories of the riders in the ground-truth datasets,

and summarized their characteristics. This analysis aids in

excluding improbable trajectories. We observed that riders in

real-world scenarios always exhibit the following characteristic

in their trajectories: Riders maintain a discernible overall

direction of travel during the delivery process. Except for the

designated pickup locations and order addresses, they do not

exhibit back-and-forth movements along the trajectory. Based

on the above observation, we can eliminate unreasonable

trajectories when inferring, significantly reducing the overhead

of the algorithm.

2) Segment Matching Algorithm for gathering areas: With

the above steps, the adversary could recover riders’ sub-
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Fig. 3: Attack Framework

trajectories between gathering areas. In the second stage, the

adversary will link the sub-trajectories of entering and exiting

the gathering areas.

Previous works have pointed that two sub-trajectories be-

longing to the same person often exhibit similar patterns [28],

such as similar speed change trends and the higher probability

of visiting same locations. Due to the nature of riders’ loca-

tions being determined by consumers’ orders, sub-trajectories

of a rider seldom share the same visited locations. Fortunately,

upon observing 50 real pairs of entering and exiting sub-

trajectories in the ground-truth datasets, we discovered that

the speed values between entering and exiting sub-trajectories

of the same rider exhibit similar features. This phenomenon

is due to following reasons: 1) Riding habits of riders. Each

rider possesses unique riding habits, which are reflected in

their speed values. For the same rider, there will be similar

riding habits (i.e., speed patterns) in the entering and exiting

trajectories. 2) Battery level of electromobile: electromobile’s

speed is highly dependent on its current battery level. Conse-

quently, when a rider enters and exits a gathering area, they

tend to maintain a relatively stable speed pattern. Furthermore,

differences in battery levels among different riders result in

distinct speed patterns, which can be utilized to distinguish

between riders.

Based on the above insights, we propose a segment match-

ing algorithm that relies on feature comparison. The funda-

mental idea is to construct the speed vector for each enter-

ing/exiting sub-trajectory and compute the speed similarities

for all pairs of entering and exiting sub-trajectories. For an

entering sub-trajectory, we could determine all possible exiting

sub-trajectories based on temporal correlation (the interval

between enter and exit time is less than 20 minutes) and

spatial correlation (belonging to the same gathering area). For

any sub-trajectory, we can obtain a series of speed values

between two locations, and generate the speed vector V =
{v1, v2, v3, · · · }. For each speed vector V of a sub-trajectory,



Fig. 4: Number of riders under different times

we need to remove noises caused by traffic emergency, such

as the sudden appearance of a pedestrian, which could by

solved by elliptic envelope method. To compute the speed

similarities (i.e., the segment matching probability) between

a pair of entering and exiting sub-trajectories, we adopt the

Dynamic Time Warping (DTW) algorithm. DTW is a method

that calculates the difference between two given sequences of

varying lengths. For each entering sub-trajectory, we compute

the DTW distance between its speed vector and the speed

vectors of all possible exiting sub-trajectories. We then rank

the exiting sub-trajectories based on the DTW distance: The

smaller the distance, the higher the likelihood that it is

the exiting sub-trajectory corresponding to the entering sub-

trajectory. Based on the ranking, we can link sub-trajectories

that span one or more gathering areas to form the complete

trajectory of riders.

V. MEASUREMENT AND EVALUATION

In this section, we firstly use static metrics to evaluate

location anonymity on the real-world datasets, followed by

the evaluations using the proposed multi-stage trajectory in-

ference attack to fully assess the effectiveness of the location

anonymity in practice.

A. Static Measurement of Location Anonymity

The mix set is an useful metric for assessing the extent

of location privacy protection achieved by location anonymity

strategies. In the context of location anonymity, we define the

mix set as follows: For a rider ui, let ltui
represent the location

of ui at time slot t. Take this location as the center and the

maximum movement distance Δdmax as the radius, we can

determine the maximum movement range of ui in the next

time slot. All riders within this circular area at next time slot

could potentially be the rider ui, forming the mix set of the

rider ui. We use the mix set as the metric for evaluation on a

day’s data from the Ele.me platform. To save space, the results

on Meituan platform are not shown, as these two platforms

exhibit similar situations.

Fig. 5: Ratio of riders’ locations under each size of mix set

As explained in Sec. III-A, whether the location of a rider

is displayed within a time slot is random, leading to variability

in collected locations of riders across time slots. Therefore, we

firstly calculated the number of riders under different times to

represent the distribution of riders in our datasets, as illustrated

in Fig. 4. Experimental results show that there are over 150
active riders (average) in each time slot within our collection

area, and the number can even reach up to 300 at lunch/dinner

times, proving that it can serve as a high-quality dataset for

evaluating location anonymity.

Then we calculated the overall mix ability, i.e., the size of

mix set of each location. Fig. 5 shows the ratio of riders’

locations under each size of mix set. 89.3% riders’ locations

have at least one mix neighbor, and even 15.6% locations have

at least nine mix neighbors. We also evaluated the size of

mix set from temporal dimension, as shown in Fig. 6, which

displays the distribution of mix set size across different times.

We could find that large mix sets (e.g., ≥ 6) always appear

during lunch/dinner times. This phenomenon is related to the

characteristics of platform services and people’s living habits,

as a large number of riders frequently enter and exit gathering

areas to pick up goods and move along roads for delivery

during lunch/dinner times.

City level comparison. We also conducted experiments

using daily data of three cities to demonstrate there is no

contingency in the above experimental results. Using the

comparable experimental environments (e.g., the size of the

experimental area) and the designed data collection system, we

also collected anonymized location data of riders from other

two cites. Then we processed these location data of riders and

computed the mix sets of them. Fig. 7 shows the distribution

of mix sets across three cities. While there are fluctuations in

the ratio of different sizes of mix sets across different cities

due to variations in population density and lifestyle habits,

location anonymity still demonstrates consistent and effective

protection in different cities.



Fig. 6: The distribution of mix set size under different times

B. Dynamic Evaluations through Multi-stage Trajectory Infer-
ence Attack

In this section, we systematically evaluated the performance

of location anonymity through the proposed attack. We applied

our attack on anonymized datasets (as described in Sec. III-B),

which comprised millions of anonymized locations of riders.

1) Metrics: Similar to [28], we use two well-known met-

rics, time-traceability and distance-traceability, for perfor-

mance evaluations. Traceability metrics can quantify the de-

gree to which a user can be traced over time or distance.

The inferred trajectories from anonymized datasets and real

trajectories of riders (ground-truth datasets) are represented by

discrete locations. Due to different collection frequencies and

GPS deviation, the same road segment in these datasets may be

represented by different locations. For the convenience of com-

parison, we transformed the representation of discrete loca-

tions into the representation of roads using APIs of navigation

systems. Let ˜Trai = (˜road0,˜road1,˜road2, · · · ) denote in-

ferred road segments, and Trai = (road0, road1, road2, · · · )
denote real road segments of the rider i. The time- and

distance-traceability metrics are defined as follows:

pt(Trai, ˜Trai) =

∑n
k=0 tused(roadk) · I(roadk)

tused(Trai)
(2)

pd(Trai, ˜Trai) =

∑n
k=0 dtraveled(roadk) · I(roadk)

dtraveled(Trai)
(3)

Here, tused and dtraveled represent the used time and traveled

distance of a road segment/trajectory. I(roadk) = 1 if roadk
can be correctly recovered. Otherwise, I(roadk) = 0.

2) The performance of Location Linking Algorithm for
Non-gathering areas: Using time- and distance-traceability

metrics, we evaluated the performance of location linking

algorithm on two anonymized datasets. The results are shown

in Table I. Experimental results show that location linking

algorithm achieves a success rate of over 83.4% with the

Fig. 7: The distribution of mix sets across different cities

distance-traceability metric and around 72.1% with the time-

traceability metric in tracking riders on Ele.me platform. On

the Meituan platform, the success rate is over 74.5% with

the distance-traceability metric and around 66.4% with the

time-traceability metric. Our evaluation demonstrates that the

adversary could achieve relatively high accuracy on both

platforms when tracking riders in non-gathering areas. The

success rate on the Meituan platform is slightly lower due to

the fact that the platform does not provide services in some

sub-regions of our collection area, resulting in uncollectable

location data for a portion of riders.

TABLE I: The performance of location linking algorithm

Platforms
Non-gathering areas

time-traceability distance-traceability

Ele.me 72.1% 83.4%

Meituan 66.4% 74.5%

Although we cannot achieve long-term tracking through this

step (location linking algorithm), the inferred sub-trajectories

can still lead to privacy leakage, e.g., inferring rider’s homes

by aggregating starting routes of multiple days and deducing

order information (which residential zone’s consumers placed

orders from which merchants or shopping malls) from the sub-

trajectories. The sizes of mix sets in non-gathering areas are

significantly lower than the sizes of mix sets in gathering areas.

Insufficient mix level is the primary cause of location privacy

leakage. Without sufficient mix locations, some side channel

information, such as driving direction and road information,

will reveal the relationship between two anonymized locations.

Due to the high mobility of riders on the roads, it is difficult to

form uniform and large-scale mix locations in non-gathering

areas, making location anonymity susceptible to the influence

of side channel information and less ineffective.

3) The Performance of Segment Matching Algorithm in
gathering areas: In second stage, we links the sub-trajectories

of entering and exiting the gathering areas using the segment



matching algorithm. We evaluated the performance of segment

matching algorithm on the results of the previous step, i.e., in-

ferred sub-trajectories of entering and exiting gathering areas.

For the sub-trajectories, we can generate the speed vector and

use DTW algorithm to compute the speed similarities (i.e., the

segment matching probability).

Due to the influence of unstable speed and the ever-changing

road conditions, it is challenging to accurately select the

real exiting sub-trajectory in practice. Therefore, we used a

new metric, top-k trajectories, to evaluate the matchability.

Experimental results on the Ele.me platform show that when

selecting top-10 candidate exiting sub-trajectories, there exist

a trajectory that can cover 77.8% of the real trajectory. For

the Meituan platform, the value is 68.9%. When a rider enters

and exits a gathering area, we still have a certain probability of

inferring the rider’s trajectory. However, when a rider across

multiple gathering areas, the inference errors rapidly increase,

causing the inability to long-term tracking.

C. Takeaway

In our experiments, we used static metrics and dynamic

attacks to evaluate the performance of location anonymity

on the real-world datasets. Static measurement results show

that location anonymity appears to be performing well, as

89.3% riders’ locations have at least one mix neighbor, and

even 15.6% locations have at least nine mix neighbors. Un-

fortunately, location anonymity is susceptible to the influence

of side channel information. Some side channel information,

such as driving direction and road information, will leak the

relation between two anonymized locations, resulting in a

higher success rate of short-term tracking. The emergence

of gathering areas (e.g., shopping malls) where massive rid-

ers exhibit messy trajectories helps to disrupt the long-term

tracking of riders’ trajectories. When a rider across multiple

gathering areas, trajectory tracking has become almost impos-

sible. This strong aggregation properties of riders formed by

the characteristics of takeout services (i.e., frequently entering

and exiting multiple gathering areas for picking up goods),

previously deemed unrealistic across multiple scenarios, play

a crucial role in thwarting long-term tracking, offering valuable

insights for designing more effective location privacy protec-

tion solutions.

VI. RELATED WORK

Location privacy has received significant attention in re-

cent years due to the widespread adoption of location-based

services [29], [30], [31], [32]. Researchers have investigated

various approaches to safeguard location privacy, such as

location generalization, location perturbation, and location

anonymization.

Location generalization refers to hiding the location in a

way that decreases its precision or detail, making it less precise

while still retaining a certain level of usability [33], [34],

[35]. Location perturbation is a crucial strategy in the field

of location privacy protection, which can prevent an adversary

from inferring the exact location by introducing random noise.

In recent years, differential privacy (DP), a highly rigorous

privacy model, has been widely used to protect location pri-

vacy. Andrés et al. proposed geo-indistinguishability [11] and

inspired a lot of subsequent works [12], [13], [36]. Through

years of development, these approaches have evolved from

manually setting the simple rules (e.g., offsetting a specific

distance) to adding random noises that comply with strict

privacy guarantees.

Another line of research in the field of location pri-

vacy focuses on anonymizing locations/trajectories by remov-

ing/changing real IDs. Various anonymity techniques have

been suggested to safeguard human mobility trajectories.

Initially, trajectory anonymity techniques that use a fixed

pseudonym for the whole trajectory were employed by several

applications. However, some works have demonstrated that

users can still be re-identified using external information [15],

[16], [18]. The mix-zone is a classic model designed to

preserve location privacy in services that involve continuous

location exposure. It effectively breaks the continuity of a

user’s location exposure by frequently changing pseudonyms

within designated areas [17], [19], [20], [28]. Further, location

anonymity, which uses different pseudonyms for each location,

strictly divides an entire trajectory into distinct locations with

different pseudonyms [21], [22], [23]. However, current works

only verified the effectiveness of location anonymity on the

simulated datasets generated by simulated tools, which may

differ significantly from the actual scenarios. The effectiveness

of location anonymity in practical scenarios remains uncertain

and has received less attention so far.

VII. CONCLUSION

In this paper, we investigate the effectiveness of location

anonymity in practical scenarios (i.e., two popular takeout plat-

forms). We firstly design a large-scale data collection system

and collect millions of anonymized location data of riders from

two takeout platforms. We then propose an innovative multi-

stage trajectory inference framework specifically tailored to

study the effectiveness of location anonymity. The experiments

conducted on the collected datasets refute the effectiveness

of location anonymity for short-term tracking but confirm its

utility for long-term tracking. Experimental analysis reveals

that strong aggregation properties of riders, previously deemed

unrealistic across multiple scenarios, play a crucial role in

thwarting long-term tracking.
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