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Abstract

Large Language Models (LLMs) are increasingly integrated
into daily routines, yet they raise significant privacy and safety
concerns. Recent research proposes collaborative inference,
which outsources the early-layer inference to ensure data lo-
cality, and introduces model safety auditing based on inner
neuron patterns. Both techniques expose the LLM’s Internal
States (ISs), which are traditionally considered irreversible
to inputs due to optimization challenges and the highly ab-
stract representations in deep layers. In this work, we chal-
lenge this assumption by proposing four inversion attacks
that significantly improve the semantic similarity and token
matching rate of inverted inputs. Specifically, we first develop
two white-box optimization-based attacks tailored for low-
depth and high-depth ISs. These attacks avoid local minima
convergence, a limitation observed in prior work, through a
two-phase inversion process. Then, we extend our optimiza-
tion attack under more practical black-box weight access by
leveraging the transferability between the source and the de-
rived LLMs. Additionally, we introduce a generation-based
attack that treats inversion as a translation task, employing an
inversion model to reconstruct inputs. Extensive evaluation of
short and long prompts from medical consulting and coding
assistance datasets and 6 LLMs validates the effectiveness of
our inversion attacks. Notably, a 4,112-token long medical
consulting prompt can be nearly perfectly inverted with 86.88
F1 token matching from the middle layer of Llama-3 model.
Finally, we evaluate four practical defenses that we found
cannot perfectly prevent ISs inversion and draw conclusions
for future mitigation design.

1 Introduction

Despite its widespread application, the large size of Large
Language Models (LLMs) prohibits fast inference on local
devices, forcing users to send their inputs (a.k.a., prompts)
to the cloud and risk privacy leakage. This also impedes the

®Yan Meng and Haojin Zhu are corresponding authors.

application in sensitive domains and commercial coopera-
tion [1]. Moreover, as the model scale continues to grow (e.g.,
Llama-3 has a size up to 405B [2]), a single server can merely
load the model in one piece, let alone swift inference.

Therefore, collaborative inference [3, 4, 5] has been widely
applied to enforce data locality, where the shallow layers are
stored on the local device and only the Internal States (ISs)
are transmitted to the cloud for continuous inference on rest
layers. Meanwhile, to meet the requirements of trustworthy
Artificial Intelligence (AI) [6], ISs can also be exposed to
a third party for safety auditing, as ISs of deep layers can
be leveraged to robustly identify factual errors [7, 8, 9, 10,
11], defend jailbreaks, backdoors [12, 13, 14], or manipulate
internal representations of the model’s concepts [15, 16, 17].

The potential exposure of increasingly used ISs raises our
research question: Can we invert the input query based on
the ISs, even in highly deep LLMs? Current embedding in-
version [18] assigns trainable variables to each input token
and selects the candidate tokens via optimization, which is
proven effective on conventional Language Models (LMs)
(e.g., BERT). Recent works show that text embeddings or
model outputs [18, 19, 20] can be used to invert inputs. These
attacks train generative inversion models conditioned on ob-
served embeddings or outputs.

Yet, simple adoption cannot work well for ISs because of
two new challenges. First, ISs are designed for subsequent
inference and contain abstract logical representations [17],
which are inherently different from previously studied embed-
dings or model outputs of high semantically relevance with
inputs. Second, LLMs have significantly more layers, higher
width, and larger dictionary than LMs studied in prior work,
which further hinders the inversion, especially for ISs of deep
layers because of feature loss based on the information bot-
tleneck [21]. Therefore, we need more powerful inversion
attacks to evaluate the privacy risk of ISs.

In this work, we are the first to explore the inversion fea-
sibility of ISs by proposing both optimization-based and
generation-based attacks adapting to white-box access and
black-box access to model weights. Specifically, our white-
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box attacks are designed for the adversary (e.g., curious-but-
honest inference server) who can exploit the weights to op-
timize the input text with nearly exact and correctly ordered
tokens without any assumption on input distribution. Our
black-box attacks are suitable for a third-party adversary (e.g.,
LLM auditor) who can probe the ISs for analysis and can
train an inversion model based on her own surrogate data of
similar distribution to the victim’s queries.

Since searching for the optimal token sequence through
brute force is infeasible, we introduce a novel two-phase in-
version for the optimization-based attack: we first invert the
input embeddings and then recover the correct input tokens.
For shallow layers, our attack, Embedding Recovery (ER),
produces embeddings of candidate inputs by minimizing the
distance of its ISs to the target. Then, the tokens with the
closest input embedding to the optimized embedding are se-
lected. This tackles the large-dictionary challenge by avoiding
searching over significantly huge token combination space.
For deep layers, ER can fail because of gradient explosion.
We propose Token Basis Selection (TBS) that determines
the optimal combination among base vectors of input em-
bedding space as the inverted embeddings for further token
inversion. This tackles the high-depth challenge by reducing
optimized variables and avoiding local minima encountered
in the previous solution [18].

Without access to the target model weights, we first extend
our optimization attacks to the black-box setting by identi-
fying whether the target is derived from adversary-known
LLMs, based on our insights that a large number of LLMs are
derived from existing ones instead of pretrained from scratch.
For the generation-based attack, we regard the ISs as an en-
coded language and use the encoder-decoder models, which
are commonly used in machine translation, for input inver-
sion. To tackle the challenge of representation discrepancy
between ISs and semantic meaning, we propose a projection
module that aligns the ISs with the encoder for inversion with
the decoder.

Our evaluations include 6 real-world high-ranking LLMs,
both short-context prompts, as adopted in existing works, and
additional long-context prompts on medical consulting and
coding assistance. The results demonstrate the inversion ef-
fectiveness. For example, given ISs from the middle layer of
Llama-3-8B-Instruct, our TBS attack can invert input of
4,112 tokens with 86.88 F1 token matching and 95.19 seman-
tic similarity which cannot be reached by prior work. Our
generation-based attack can also achieve 81.6 F1 score for
inputs of medium length (i.e., ~1k tokens) which is compa-
rable to the white-box attack. Lastly, we test four defenses
including quantization, dropout, noisy input embedding, and
Differential Privacy (DP) through the Laplace mechanism.
Our black-box attack cannot be mitigated without greatly dete-
riorating the model utility, calling for more effective defenses
in the future.

In summary, our contributions are:

* We are the first to systematically investigate the input
inversion risk of LLM ISs. Our work reveals that an
attacker can successfully recover sensitive prompts of
LLMs, spanning up to 4,112 tokens, from their ISs.

To overcome the challenges of semantic spasticity and
feature loss from high-depth layers, we propose four
novel inversion attacks adapting to both white-box and
black-box attack settings.

We extensively evaluate our attacks on sensitive inputs
including medical dialogues and coding assistance. We
also evaluated DP-based defense and found our attack
can still invert input of high semantic similarity even sig-
nificantly sacrificing the downstream inference quality.

2 Preliminaries & Motivation

In this section, we first briefly introduce the modern LLM
implementation, the risk of IS exposure and overview existing
inversion techniques.

2.1 Language Modeling

We begin with a brief recap of how modern LLMs processes
the texts. Formally, an input text (a.k.a., prompt) x is first
tokenized by the tokenizer 7y of an LLM f into a string
of tokens Ty(x) := t* = [t]{i=o,.. n,} Where each token is
marked with an ID #; bounded by the maximum token number
Nz, ie., t; € [0,--- ,Nz]. The token IDs are then mapped
by the input embedding layer £/ of weight wf; € RNz xdin
into the sub-matrix of corresponding row vectors E/ (t¥) :=
[W'{; (t7)]fi=0,. N;}- We denote the first I Transformer layers
of an LLM f is \p{ . The ISs of the /-th layer of an LLM are
h{ . Put together, given input text x, the ISs at /-th layer of an
LLM f are h/ (x) = v/ (E/ (T} (x)).

2.2 Motivation

In LLM service, maintaining the confidentiality of ISs is not
always guaranteed. We identify two scenarios in which ISs
may be exposed to an untrusted party for inversion.

LLM Alignment & Concept Engineering. LLMs are
notorious for hallucination, which can deceive and misin-
form the user. Therefore, LLMs are persistently surveilled
for safety reasons. Recently, a growing number of stud-
ies[8,9, 10, 12, 17, 28] show that the ISs are robust indicators
of hallucination. This provides LLM holders with a promis-
ing solution to correct model behavior in the runtime [11].
For instance, instead of directly examining the prompts, Ope-
nAl may run an automated safety classifier to improve their
services based on the classifier-generated metadata based on
policy [29]. Besides, ISs are also required in representation
engineering [15] to control the model concept.
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Table 1: Comparison with previous inversion attacks against (large) language models.

. Weight Inversion Goal Evaluation
Inversion Target Method A
ceess Semantic-preserving  Token Matching ~ Attribute Inference ~Max. Model Size' Data Types Max. Data Length
. Generation ® v X X -
. 2 ats
Embeddings [18, 19, 22, 23] Optimization o X v v 110M Chats, Medicine 422
Outputs [20, 24] Generation [ ] v X X 7B System Prompts, Chats 256
Gradients? [25, 26, 27] Optimization O v v X 7B Chats, Code, Math 512
Internal States (Ours) Gep efat“.’“ . v X X 70B Medicine, Code 4,112
Optimization @] X v

! Only for models with publicly known size. > Attacks targeting training data instead of input texts.

Collaborative & TEE-shielded LLM Inference. Several
solutions [3, 4, 5, 30] have been proposed for layer-wise LLM
splitting and partitioning to accelerate LLM serving capacity.
For instance, EdgeShard [5] dynamically shards models onto
edge devices for closer LLM deployment to the data source.
PETAL [30] allows several servers to collaboratively infer or
finetune models up to 405B through layer-wise model split-
ting. HELIX [4] exploits heterogeneous GPUs from different
regions in the globe. Besides, the split model can be loaded
in Trusted Execution Environment (TEE) to protect input pri-
vacy [31, 32]. In both settings, the party holding rest model
layers receives and infers ISs.

2.3 Challenges

There has been a line of work studying how the LMs leak the
user input texts. For example, the text embeddings are shown
at risk of leaking the input text through inversion attacks in
both white-box and black-box settings [18, 19]. Recently, it
has been shown that the user’s input prompt can be accurately
reconstructed with only the LLM logits [24] or outputs [20].
The gradients in federated learning [25, 26, 27] can also leak
the training texts by inversion attacks. Technically, the in-
version either attempts to locate the candidate input tokens
(without considering their relative positions) through opti-
mization (Optimization-based), or trains a generative model
with surrogate data for inversion conditioned on observed
embeddings (Generation-based).

Our work is the first to explore the feasibility of input inver-
sion through ISs as an LLM inner representation. Applying
existing embedding inversion techniques on ISs can result in
poor inversion due to the difference between text embeddings
and LLM ISs. We identify two new challenges:

Increased model scale and token dictionary size. In general,
LLMs have a deeper layered architecture, higher model width,
and larger token dictionary than conventional pretrained LMs,
making it almost impossible to get the exact input as the vic-
tim through the dictionary attack. For example, typical base
BERT only contains 110M parameters, 12 layers with width
768 and around 30k dictionary size, while modern 8B Llama-3
contains 32 layers of width 4,096 and more than 120k dictio-
nary tokens. The larger model scale significantly increases

trainable parameters, causing previous optimization-based
inversion [18] to fail because of falling into local minima on
highly compressed ISs (see Section 4).

Inference-oriented and complex representations. Previous
embedding inversion attacks focused on sentence embeddings
which are typically optimized for semantic relevance based
on mean-pooled encoder outputs [33]. On the contrary, in
the context of LLMs, the ISs are generated for continuous
inference, thus contain more sparse semantic features than
semantically-enhanced embeddings. In addition, the ISs of
deep layers contain a higher level of concept abstraction [15,
34] like reasoning, which further increases the difficulty of
accurate input inversion.

In this work, we systematically analyze the inversion risk
of ISs by addressing the aforementioned challenges through
novel optimization-based and generation-based attacks. More
importantly, we validate the effectiveness of these attacks in
practical settings, as summarized in Table 1.

3 Threat Model

We consider a curious-but-honest adversary. For example,
a malicious third-party auditor authorized to access ISs for
safety auditing [7, 8] can stealthily store the observed ISs for
the offline inversion. In the context of collaborative inference,
the adversary server hosting middle layers or bottom layers
of the deployed LLM, receives ISs of the splitting layer and
sends results to the next party following the protocol with
the client and other servers [4, 30]. The server can allocate
partial computational power to invert the user queries based
on knowledge of splitting layers and observed ISs.

Adversary Goals. The adversary A4 aims to invert the input

texts/prompts of victim % based on the observed ISs h{q/ (x)
of ground truth inputs x and her model f4. The inverted texts
should preserve the semantics and exact tokens as the victim’s
input. Note that this goal is harder than privacy attribute infer-
ence and can be applied for further analysis (e.g., Personally
Identifiable Information (PII) or user identification [35]). For-
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Christmas Party. My wife Ann

r—y y This is the content of an email: I
Hallucination Detection |« ~. For good Forbad | ya told to RSVP to youl\\ the
Jailbreak Detection — @ e
_ 3 Toversion’| South and Myself Steve South Will
Over-refusal Prevention j«— /Y attend. T am ENA gas trading What
was the subject line for this email?
LLM

User: This is the content of
an email: I was told to
RSVP to you for the
Christmas Party. My wife
Ann South and Myself Steve
South Will attend. I am

ENA gas trading. What was
the subject line for this email?,

Next token

Answer:

Fully- connected

Transformer Layer k
Transformer Layer n

Embedding Layer
Transformer Layer 1
Transformer Layer 2

Figure 1: A curious-but-honest LLM safety auditor or collab-
orative inference party can observe ISs and recover the nearly
exact user inputs even in deep layers (false inverted tokens
are in red).

mally, the ISs inversion is

£=argmind(h/ (), b/ (x)),
x'edomT (D)
S.LS(,x) 2 s, [ Ty () N Ty (0] /[ Ty ()] = T
where dom‘Z” denotes the tokenizer’s input domain, d is the

distance metric between two ISs, S evaluates semantic similar-
ity, Ts (resp., Trm) is a threshold of S (resp., token matching).

Adversary Knowledge. We assume the adversary knows the
layer [ of ISs and consider two settings: 1) The adversary
has white-box access to the weights (i.e., fq = f/). For in-
stance, the collaborative inference PETAL [30] requires the
adversary server to know the whole weights so as to select
its layers during the load balancing [4], thus know the layer
index for attacks; 2) The adversary has no knowledge (black-
box access) of the model weights and can only observe the
ISs. A typical example can be third-party model behavior
auditing [7, 8, 9, 36] by probing ISs of specific layers' for the
layer-specific detector training [37].

Adversary Capacities. We consider passive attacks thus the
adversary cannot interact with user or manipulate the de-
ployed model. However, the adversary can store the observed
ISs h; (we omit f3, and x for simplicity) from the target model
f+ and have computational resources enough for inversion
but insufficient for brute force search. The adversary can
also query the target model to obtain ISs of her owned data
Xg which is of distribution similar to but not exactly as the
victim’s query. For example, the adversary may have general
instruction tuning data but the victim queries are from specific
domains (e.g., coding), which are not known by the adversary
because of no interaction.

4 Internal States Inversion

In this section, we first overview the attacks and clarify the ter-
minology. Then, we elaborate our attack insight and method.

Thttps://github.com/microsoft/TaskTracker/blob/main/
task_tracker/utils/activations.py

h
” » [Optimization-|| Generation-
2 based based
- Inversion Inversion
£ [ 1
& -
z Model .,
g .
& Replication @E—$
7s
- Yes
Every once and a while, | _
think about my ex- Surrogate ) Inversion
boyfriend from four years Data 2. Derived Model
ago... . odel? .
Collection Training

Figure 2: Overview procedure of our attacks. Depending on
the model access, the adversary can adopt our optimization-
based or generation-based attacks to achieve attack goals.

4.1 Overview

Our attack framework proceeds according to the adversary’s
knowledge to the target LLM. Figure 2 shows the overall
workflow of our attacks based on the adversary’s capacities. In
particular, in cases of white-box access to the model weights,
our optimization-based attack iteratively updates the inverted
input by matching the observed target ISs. One important
advantage is that, there is no assumption on the knowledge
of victim’s prompt domain and length (i.e., data-agnostic).
We propose two attacks, Embedding Recovery (ER) and To-
ken Basis Selection (TBS), targeting shallow and deep ISs
respectively.

Without access to the weights, the adversary follows our
black-box attacks. Due to high cost of pretraining, the target
LLM is likely to be derived from public open-source models
through finetuning or merging. As a result, the first step is
to determine whether the target model is derived from any
known base LLMs type. If it is, the adversary trains a sur-
rogate model and apply our optimization-based attacks. If
not, our generation-based attack trains an inversion model
based on the ISs queried by the adversary’s surrogate data.
To tackle the challenge of semantic irrelevance, we introduce
a projection module based on sparse encoder [20] and trans-
lation model to enhance the inversion. This can be weaker
than previous white-box attacks because the knowledge of
query data can limit the inversion accuracy in case of distinct
data distribution. Note that the black-box generation-based
attack can also work on open-sourced LLMs, as long as the
adversary only needs to observe ISs to train inversion models.

4.2 White-box Inversion

We first introduce the strawman approach, then present our
proposed two white-box attacks, Embedding Recovery (ER)
and Token Basis Selection (TBS), for inverting ISs of shallow
layers and deep layers, respectively.

Strawman Approach. Inspired by previous optimization-
based embedding inversion [18, 38], the strawman attack,
Token Selection (TS), typically assigns trainable variables
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Figure 3: Evaluation of strawman attack TS on

Llama-3-8B-Instruct. The strawman approach, TS,
fails to converge on the deeper layers even under improved
settings. Moreover, when attacking the first layer, the inverted
texts contain no overlapping tokens with the input texts.

Z={z, - ,z‘hl|] € RIMNT of each embeddings to invert

i-th input token of by argmaxz;, where z; are the rows of

Z = argmax H\pl(softmaX(Z/T) Wiy — h{q/ H2 )
z

which is obtained through gradient-based optimization. Nev-
ertheless, TS can fail to locate candidate tokens for LLMs
with higher depth and larger token dictionary due to conver-
gence into local minimum. In Figure 3, we apply TS on ISs
from different layers of Llama-3-8B-Instruct and evaluate
different settings. We observe that TS gets halted for deeper
layers and output non-readable inverted texts (more quantita-
tive evaluation in Section 5.2).

Our Approach. Instead of direct token inversion, our intuition
is to first approximate the dummy input embeddings w that
matches with the adversary-observed ISs h‘lf V. and then invert
the candidate tokens as those of highest cosine similarity with
w. Algorithm 1 shows the overview of ER and TBS attacks,
where the blue (resp., red) blocks refer to the ER (resp., TBS)
attack, and the rest is shared by two attacks. Note that the
model weights are fixed during optimization.

Embedding Recovery (ER). As shown in Figure 6 of Sec-
tion 5.2, for shallow layers, the gradients on dummy em-
bedding Vw are of smaller magnitude, thus can avoid local
minimum with stable convergence. Therefore, we directly
optimize W for ISs matching with £;, :== d(w{ﬂ(ﬁ),h{ ).
Common choices of d include £, norm and cosine distance.
In experiments, we notice overfitting during inversion,
which results in the optimized W of higher norm than em-
beddings from W{f and causes incorrect token recovery in
the second phase. Thus, to ensure W is similarly distributed to
w{,f‘, we introduce a penalty term based on distribution match-
ing [391: Lam =gz, || 9(W) — @(W)")
random Gaussian neural network as universal feature extrac-
tor and the overline denotes averaging. In practice, we sample
random embedding batches of equal size from W and wf;q/
before averaging in each step. In total, the inversion loss is:

. where ¢ denotes

Lipy = -£'im+7\"[4dm7 (3)

Algorithm 1: ER ( blue ) and TBS ( red ) attacks

Input: The adversary’s model fz with input embedding
fa

in

weight w!” and the first / Transformer layers \V{ A,

the tokenizer 7;,, target hidden states h{ 7 of length
‘h{ A ‘, learning rate u, optimizer optim, distance
metric dist, steps E

Output: Inverted prompt £.
1 Initialize £ < [, 2« [];

foy ]
2 Initialize W <— 0 where w € R|h‘ Xd’";
U,A, VT < SVD(w/?) where V € Rén*din Set B+ V7T
if Apply Unbiased Basis then
3| B+,
. o . 1 ‘hf v ) xd;
Initialize projection weights z < [7-] and z € RI™ "
// 1. Optimization.
4 fori< 1to E do

5 W < @,(z-B);
6 Compute L;y,, with Equation (3) and save as L[i].
7 W < optim(L[i],W,u); Z[i] < W;

z < optim(Ll[i],z,u); 2[i] + z;
// 2. Prompt Inversion.
8 W< Zlargmin; L];
9 W< @z(Z[argmin; L]-B);
10 W+ Wlargmin, L];

I

< argmax,,,, (W (Wi T/(W]ey © || wh|

12 return 7y, .decode(t);

where A balances the inversion and the penalty.

Token Basis Selection (TBS). On deep layers, the gradients on
the dummy embedding VW have increased magnitude because
of more back-propagated gradients from previous layers ac-
cumulated by the chain rule, which destabilizes the inversion.
Therefore, our idea is to find the correct projection values z
of an orthogonal basis of wf:f to compose W, as illustrated in
Figure 4. In contrast to TS, our TBS has much smaller search
space. For example, on Llama-3-8B-Instruct, the search
space is reduced by 30 times (i.e., 4k for TBS v.s. 120k+ for
TS to recover one token). Compared with ER, the gradients
on Z is stabilized because of an additional gradient term from
the chain rule 0W/dz which is close to the small-scaled basis.
Inspired by TS, we also introduce a variable change function
¢, that bound the scale of z. For example, in our experiments,
we use arctan for ¢, to bound the z- B. More detailed analysis
can be found in Appendix A.

As the orthogonal basis is not unique, we propose two
strategies: use the basis V from SVD decomposition of wf-:fl
or the V' as an unbiased basis. Figure 5 compares the two
strategies where we observe input embeddings are more cen-
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Figure 4: Intuition behind our TBS inversion attack. Instead
of directly selecting candidate tokens from a large dictionary,
our TBS attack optimizes weights among much fewer singular
basis vectors (e.g., v;, v;j and v¢) to restore the candidate input
embeddings (e.g., V).
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Figure 5: Comparison between unbiased basis and singular
basis of LLM’s input embedding matrix for TBS attack. We
show the histogram of maximum and minimum projection
values of input embedding on the basis and found the singular
basis is more biased towards particular token groups because
of higher projected values.

tered around certain basis vectors of V (i.e., higher projection
values) where the projections of wf 2 on unbiased basis V' are
more uniformly distributed (i.e., maximum projection values
are bounded around 0.1). We provide visualization to support
the claim in Figure 17 of Appendix A, and further compare
two basis choices in Section 5.2.

4.3 Black-box Inversion

The target LLM should be either finetuned or merged from
an open-sourced base model or pretrained as a close-sourced
model. The adversary first identifies the model type based on
the observed ISs and then proceeds the extended optimization-
based or generation-based inversion.

Model Type Identification. Our insight is that the ISs of de-
rived models remain proximate to their base models because
of minor weight perturbations during finetuning or merging.
As evidenced in Figure 15, ISs exhibit tight intra-model clus-
tering and clear inter-model separation across pretrained ar-
chitectures. To realize fine-grained detection, we design an
ensemble autoencoder to check if the deployed model is de-

rived from adversary-known open-sourced ones. Specifically,
the adversary queries a pretrained LLM f with Xz and obtains

corresponding ISs h‘,f (Xq). The adversary trains an autoen-

coder on h{ (Xg) to detect this LLM type. By repeating this
process on various pretrained models, the adversary trains a
set of autoencoders {¢,}; for detecting LLMs f;. In the test
time, the adversary queries f;, with Xz to obtain given the

target ISs hlf V(X4) and harnesses the autoencoders {¢;}; to
predict in an ensemble way:

y 1= argmin{0;(h)” (Xa))|0i(hy” (Xa) <t (@)

There are two possible outcomes. First, the target LLM is
derived from one of mainstream LLMs via finetuning, adapter
or model merging. The adversary adopts this LLM for fur-
ther attack. Second, there is no such LLM, and the model
parameter is close-sourced. Then, the adversary can reuse
(Xg,h(X7)) to train a generative inversion model.

Extended Optimization-based Attack. The adversary aims
to replicate the target model with a surrogate LLM f5 that
satisfies h‘lfﬂ’ (x) ~ h{q/ (x) for any input x. Inspired by the
model distillation, we propose to replicate the ISs with the
pretrained base model fj,. Of the identified type:

fa = argmin |/ (x;) — )Y (x;)

base

)Z,Vx,-ex,q. )

Then, the adversary then applies our white-box attacks (e.g.,
TBS) onto the replicated model fz to invert input tokens of
observed ISs h{q/.

Generation-based Attack. In case where the model is dras-
tically different from the known LLM types, such as the tar-
get LLM is close-sourced, we propose to train an inversion
model that translates the observed ISs h{"/ into inputs. Sec-
tion 3 assumes the adversary data Xg = {x;}; are of similar
distribution to the victim’s query, thus, before the attack, the
adversary first trains an inversion model 6 with previously
obtained ()Cg,h{"/()(g)).

We use an encoder-decoder model 0 for inversion because
of its wide usage for translation and that the inversion essen-
tially translates the observed ISs into input tokens. However,
the ISs are generated for continuous inference and deviate
from the semantic meaning. Besides, the target ISs may have
incompatible representation space with the encoder (e.g., dif-
ferent dimension). Therefore, we propose to use a projection
module @g : R% — R%nc on top of the inversion model to
project the ISs into the encoder’s embedding space (width
denc)- In total, the inverted input is £ ~ (g (h{ ”)). Note that
the projection module is necessary for aligning ISs. For in-
stance, on the middle ISs of GPT-2, the projection module
brings 32.81% inversion improvement (F1 score).

Analysis from Bayesian Perspective. To better understand
our generation-based inversion, we analyze the inversion
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Table 2: The statistics of LLM considered in this work.

Table 3: Comparison with previous attacks based on the ISs,
logits and outputs. We report the mean for each metric and

LLM #Params (B) #Token Width Depth the standard error of the mean (SEM).
LLama-2-7B-chat 6.74 32,000 4096 32

Llama-3-8B-Instruct 8.03 128,000 4096 32 Attack CS BLEU ROUGE EM F1
Llama-3.1-8B-Instruct 303 128,000 4096 32 TS[18](L=2) 4424+032 0.00+0.00 000  0.00+0.00 0.00 =+ 0.00
Llama-3.3-70B-Instruct 70.55 128.000 8192 30 logit2text [24] 88.12+ 0.57 56.74+ 1.44 0.72 25.40+0.02 75.22 + 1.00
Qwen2~5-7B-Insm1ct 7 62 151’643 3584 78 output2text [20]  93.26+ 0.33  55.00+ 1.46 0.77 16.214+0.02  75.94 +0.99
N - TR_ : : ER (L=2) 94244+ 047 74.89+ 1.56 0.87 52.61+0.02 88.22 +0.90
Qwen2.5-Coder-7B-Instruct 7.62 151,646 3584 28 ER (L=8) 95.744+ 0.38 7291+ 0.94 0.89 6.05+0.01  87.86 + 0.69
TBS (L=8) 90.96+ 0.82  77.38+ 1.55 0.83 48.23+0.02 82.61 +1.44
TBS (L=16) 83.70+ 0.99 59.89+ 1.88 0.70 31.73+£0.02 69.13 + 1.72
) . : TBS (L=24) 88.07+0.83 65.47+ 1.69 0.77 27.35+0.02 7532+ 1.53
based on Bayes theorem. The Inversion can be formulated TBS (L=32) 81.34+ 0.60 32.67+1.19 0.62 397+ 0.01 5597 +1.02

as argmax, p(x|h,0), where we omit the projection @g for
simplicity. We can apply the Bayes’s theorem and obtain

p(hlx,0)p(x6)
p(hle)

Notice that the observed ISs h and 6 are known, thus the
inversion can be formulated as:

p(x/h,0) = (6)

argmax p(hlx, 8)p(x(6), )

where p(h|x,0) means the posterior probability of h given
prompt input x thus depends on the deployed LLM. Therefore,
the key is to maximize p(x|0) where 0 is dependent on the
adversary’s training data {(x;, h;) };. Consequently, the adver-
sary should minimize the distribution discrepancy between
the adversary’s data Xz and the victim’s prompt input.

5 Evaluation

In this section, we evaluate the effectiveness of our attack
and compare with previous approaches. Then we investigate
various attack settings. Finally, we study potential mitigation.

5.1 Experimental Setup.

Models.
use the

Throughout the evaluation, we mainly
Llama-3-8B-Instruct (Llama-3) [2],
Qwen2.5-7B-Instruct (Qwen2.5) [40] and
Qwen2.5-Coder-7B-Instruct (Qwen2.5-Coder) as
the most popular open-source LLMs. In addition, we
also use Llama-2-7B-Chat (Llama-2) to fairly compare
with prior work. To evaluate our black-box attacks, we
adopt Bio-Medical-Llama-3-8B [41] (Llama-3-Doctor),
which is a highly-downloaded model finetuned from
Llama-3-8B-Instruct with medical instruction following
data and Llama-3.1-8B-Instruct (Llama-3.1), which
enhances Llama-3 in terms of multilingual capacities and
context length via post-training [42]. For larger models,
we use Llama-3.3-70B-Instruct (Llama-3.3-70B). The
detailed statistics of base models are provided in Table 2.

Metrics. We compute Cosine Similarity (CS) between the
embeddings of original and inverted sentences. To ensure

reproducibility, we use an open-source embedding model
bge-large-en-vl.5 [43] of edge-cutting performance on
Massive Text Embedding Benchmark [44, 45]. In addition,
we use Exact Matching (EM) rate among the test dataset to
evaluate the precision of our attacks. We also use F1 score to
evaluate the matched tokens by Llama-3’s tokenizer. Besides,
we also consider widely used metrics BLEU and ROUGE to
evaluate the semantic similarity.

5.2 White-box Inversion Attack

In this section, we first evaluate our white-box attack on the
Instruction-2M test data and compare with prior work. Then,
we show that our attacks can nearly fully invert the long
prompt through case studies on long-context queries of medi-
cal consult and coding assistance.

Attack Settings. We consider the layers of index 2, 4, 8, 16,
24 for the 32-layered Llama-3 models and consider the layer
of index 14 for the 28-layered Qwen2.5 models. We use the
optimizer AdamW [46] with learning rate u € {10735 x
10741 x 107*}. We set the penalty weight A € {0,1073}. In
default, we use the Mean Squared Error (MSE) to measure
the distance between ISs and the unbiased basis for our TBS
attack. We use scipy [47] to calculate the singular vectors in
our TBS attack. In our attacks, we initialize the dummy input
embeddings with zero for ER and with 1/d;, for the base-
line TS and our TBS attacks. We also consider two distance
metrics between ISs in the loss: MSE and cosine similarity
(COS). For simplicity, the default setting uses MSE as the dis-
tance metric, sets uy =5 x 10*and A =0, and E = 5 x 10%.
For TBS attack, we use unbiased basis in default and set
¢, = o.arctan(-) with oo = 5/ to accelerate convergence. In
later sections, we will see that the optimal setting may vary
according to the input data and the deployed model.

5.2.1 Comparison

We first compare our white-box attacks with previous attacks
and later compare with our Table 3 shows the results.

Baselines. We compare with output2text [20] and
logit2text [24] as two recent state-of-the-art inversion
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Figure 6: Distribution of gradient norm ||w||, and ||z|, for
ER and TBS attacks, respectively.

attacks against LLMs, because the adversary (e.g., collab-
orative inference server) can also exploit the output and
logits for inversion. For fair comparison, we use their test
dataset of Instruction-2M and manually verify 479 common
samples from the two official implementations [20, 24]. The
maximum length of test samples is 63. Besides, we also
compare with TS baseline [18].

In Table 3, we compare our proposed attacks with previous
black-box and white-box attacks on different layer depths
L =12,8,16,24 on a 32-layered Llama-2. Our ER attack can
achieve high similarity scores on low layers and our TBS
attack can remain effective even in deep layers like L = 24.
We set u = 0.001 for layer index lower than 8 and u = 0.01
for the deeper layer to accelerate the convergence. Notably,
our attacks achieve significant higher EM rates than prior
work, indicating that the ISs can reveal (almost) identical text
information as the raw input text.

Cause Analysis. We then proceed detailed analysis of inver-
sion results. As discussed in Section 4, TS directly selects
candidate tokens for inverted input text, which does not work
as the similarity scores between inverted and real input texts
are close to zero. In fact, the inversion loss converges around
10~2 and cannot be improved by tuning learning rates. On
the other hand, previous black-box attacks, exploiting the out-
put logits or texts, result in comparable inversion in terms of
semantics and token matching, and slightly lower EM score,
because of the randomness during inversion model generation
and higher information loss in the model output.

As for our attacks, ER performs better at shallow layers
and TBS can remain effective in deep or even the close-to-
last layers. Notably, the ER attack can exactly invert more
than half input texts on the shallow layer L = 2. This can be
realistic in split learning with resource-constraint edge devices
or small-sized enclave (e.g., SGX-v1) where the victim can
only infer one or two shallow layers.

As for deep layers, the ISs contain less input text features
and are more difficult to invert. Thus, even though the seman-
tics are preserved, our ER attack’s on deeper layer L = 8 has
significantly lower EM rate because of more noisy tokens
(e.g., inversion as “tva017"” for “2/2/2017”) added during
inversion. From the optimization perspective, higher depth
can lead to gradient exploding causing the directly recovered
input embedding dissimilar to the actual token.

On the other hand, our TBS attack can stabilize the op-

timization curve by preserving the gradient magnitude. In
Figure 6, we testify this through distribution of the gradient
norm on the test texts, where we can observe that ER on deep
layer (L=8) generates gradient of magnitude 10'?> while our
TBS on deep layers can maintain the gradient norm of the sim-
ilar magnitude as on shallow layers. Therefore, the exploded
gradients cause the convergence on local minimum and lead
to low inversion quality. Note that the gradients of TBS on
L=8 have sightly larger norm than L=2, which explains why
inversion on deeper layer should use lower learning rates. As
for qualitative results on the middle layer (L=16), on a random
subset from Instruction-2M of 200 samples, ER only achieves
CS score 50.35 and F1 score 7.56, which is significantly lower
than our TBS attack shown in Table 3.

Results on Middle Layer. We note that the inversion by our
TBS attack on the middle layer, although evaluated better in
terms of EM rates, are worse than the deeper layer (L=24)
in terms of semantic similarity scores and F1 scores. We
investigate the inverted texts and found that there are also
numerous noisy tokens from other languages (e.g., Russian
and Korean) replaced for the original English words. More
noisy tokens cause the readability degradation of inverted
texts, thus lower the semantic similarity scores and token F1
score. Although we tried lower learning rate u = 0.001, the
inversion on the middle layer does not get improved. We
suspect the reason lies in the optimization dynamics: the TBS
inversion on L=16 gets saturated after 20,000 steps but keeps
improving until steps 30,000 for L=24. In future work, we
will investigate real causes from the perspective of training
dynamics.

Inversion on Last Layer. We apply TBS attack on the last layer
L=32. As Table 3 shows, the depth further degrades inverted
texts, which partially aligns with prior work [34] that deep
layers capture more complicated concepts instead of simple
features of input texts. Nonetheless, our attack validates a
counterintuitive finding: high-depth latent layer can still leak
the original inputs in entirety (EM~4).

Takeaway: On short-context inputs, our optimization
attacks outperform TS, achieve comparable inversion as
previous generative inversion.

5.2.2 Case Studies: Long-context Inversion

In the remainder of the paper, we evaluate how our inver-
sion attack perform on long-context prompt through two case
studies of privacy-sensitive tasks: healthcare consulting and
coding assistance. We use Llama-3 for its support of longer
context and choose the middle layer (i.e., L=16) as it is re-
ported best to probe the LLM [7, 16] and balances the infer-
ence cost between two parts in collaborative inference. Thus,
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Figure 7: Distribution of token length from our test data (top 100 longest inputs of long-context benchmarks). The rightmost
corresponds to the evaluation set for our TBS attack which contains longest 25 prompts from each benchmarks. We show the

total token amount along in the figure title.

we mainly investigate our TBS attack. In addition, we investi-
gate optimal optimization strategies (e.g., distance metric in
loss) for different tasks.

Datasets. We consider datasets of two privacy-sensitive tasks:
healthcare dialogue and coding assistance. For medical data,
we use the symptom descriptions from Aimedical [48] and
Mentalhealth (MH) [49]. For coding assistance, we use two
coding problem datasets Evolcode (EC) [50] and Codeparro-
tApps (CA) [51] that contain prompts asking LLM to solve
coding problem. Figure 7 plots the distribution of length of
top 100 long prompts for the four benchmarks, from which
we can find that Aimedical contains the longest prompt of
4,112 tokens and CodeparrotApps has longer coding prompts
than Evolcode. We use the top 25 longest prompts from each
dataset to evaluate our TBS (right-most of Figure 7).

Our attack can scale to long-context inversion. Figure 9
compares the similarity metrics for different attack settings.
Note that due to long length and noisy inverted tokens, the
EM rates are all zero, thus we omit the EM results to save
space. Specifically, the optimal settings are reported for lower
learning rate y = 0.0001 with COS as the distance metric,
which leads to 99.4 CS and 97.88 F1 on Mentalhealth, and
98.12 CS and 96.7 F1 on Aimedical. Both resultin 0.99 Rouge
score. Next, we show examples of long-context inversion.

Example: Healthcare Dialogue. We begin with examples of
healthcare dialogues. Figure 8 shows an inversion example of
384 tokens sampled from Mentalhealth. The missing tokens
are highlighted in color. This example shows that our inver-
sion attack can nearly invert the whole prompt text except for
a small proportion of tokens.

Comparison & Qualitative Analysis. Prior work can fail for
long-context inputs. For the above example in Figure 8, we
test previous state-of-the-art output2text [20] pretrained on
Llama-2 and unbridle the maximum sequence to 4,096. The
output is “How do you manage the tension and tension that is
causing you to go crazy?”, which is completely different. On
the contrary, ours only misses certain tokens.

We found that the missed tokens are synonym of the ground
truth tokens and have similar input embeddings. Take the first
missed token in Figure 8 as an example, the ground truth
token is “friend” while the inversion is “boyfriend” because its
embedding is the most similar to the inverted input embedding.
After a manual checking, we found the embedding of the

ground truth token “friend” is the third most similar token
(which is apparently similar to the embedding of “boyfriend”),
thus is missed during token generation. That is why smaller
learning rates could benefit the inversion because of more
refined updating. One potential improvement could be beam
searching to cover all the possible paths.

Learning Rates & Distance Metric. To begin with, we in-
vestigate different learning rates and distance metrics of our
TBS attack in Figure 9. The results are expected because the
self-attention leverages inner product to compute attention
and subsequent ISs, which makes COS more reliable distance
metric than MSE. However, computing COS requires higher
VRAM because the matrix computation has space complexity
O(n?) for a n-length prompts. Besides, as mentioned earlier,
we found smaller learning rates improve the inversion on deep
layers. The potential reason can be more fine-grained input
embedding inversion, which leads to more accurate candi-
date token recovery. Next, we explore to improve the attack
performance by additional settings.

Improved Attack Settings. Table 4 shows inversion with appli-
cation of our token distribution matching penalty and usage of
SVD singular basis. We make two observations: 1) the penalty
can improve the inversion at larger learning rate 0.0005 which
may be useful to accelerate inversion through faster conver-
gence (i.e., fewer steps). 2) usage of SVD singular basis can
also improve the inversion performance regardless of learning
rates, possibly because it enables more precise input embed-
ding inversion than unbiased basis. Nevertheless, SVD singu-
lar basis may not work if applying optimization-based attack
to derivatives under the black-box setting (see Section 5.3).

Larger Models. Our white-box attacks are size-agnostic thus
can scale to larger models, at the expense of higher VRAM
cost and optimization time. As shown in the Table 4, our TBS
attack remains effective for Llama-3.3-70B on Mentalhealth.
Notably, compared to smaller 7B Llamamodel, the inverted
texts are closer to the ground truth as indicated by higher CS
and F1 scores, possibly because of more information retained
in wider ISs (i.e., 8192 for 70B and 4096 for 7B). However,
as the TBS attack requires forwarding and backpropagation
to iteratively update the inverted input, larger models can
significantly increase the optimization time and GPU memory.
For example, attacking 70B is 7 times slower and costs 10
times more memory than 7B.
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Input

Inversion

I am constantly having problems with the same two people who will always be
in my life. I had a daughter‘ with my ex-boyfriend. I am now married, and my
husband’s ex- glrlFrlend is involved with my ex- boyfriend. They also have a
daughter together. My issue is that there is always drama. I am pregnant, and
I told my ex-boyfriené that I don't want any drama or arguments. I want to
get along as much as possible, and he agreed. However, we just had an incident
where my ex-boyfriend started discussing drop-off details about my
stepdaughter. I told him that he needed to ask my husband because I can't
make decisions about my stepdaughter regarding the matter. That led to an
argument. I told him all my concern is when I pick up my daughter. #y
stepdaughter’s pick-up details are between my husband and his ex-girlfriend.
I especially told him I didn't want to be involved. Somehow, he turned it
around and then—wanted to change the schedule we agreed on. He threatened me
and got ugly because I wouldn’t discuss my stepdaughter’s matters with him.
The point is there is so much drama. I try my best to get along with everyone.
I don't understand where I went wrong (besides replying back to his question)4
I feel like I'm going crazy because this is a constant battle where everyone’s
frustrations are taken out on each ether, and it's the children that are
hurting. I had a party planned for my daughter’s birthday, and my ex-boyfriend
told me to cancel those plans because he weuldn’t let me have her. In my eyes,
it’s the child that is hurting. I was throwing a party for her birthday, and
because of the problem with stupid pick-up details about my stepdaughter,

which I have no control over, he took it out on our daughter.

I am constantly having problems with the same two people who will always be in
my life. I had a daughter‘ with my ex-boyfriend. I am now married, and my
husband’s ex- g1r‘1fr‘19nd is involved with my ex-boy boyfriend. They also have a
daughter together. My issue is that there is always drama. I am pregnant, and
I told my exSony>';\n\n that I don't want any drama or arguments. I want to
get along as much as possible, and he agreed. However, we just had an incident
where my ex-boy_ boyfriend started discussing drop-off details about my
stepdaughter. I told him that he needed to ask my husband because I can't make
decisions about my stepdaughter regarding the matter. That led to an argument.
I told him all my concern is when I pick up my daughter. my stepdaughter’s
pick-up details are between my husband and his ex_girlfriend. I especially told

I doesn't want to be involved. Somehow, he turned it around and

then<|begin of text|> to change the schedule we agreed on. He threatened me
and got ugly because I doesn’t discuss my stepdaughter’s matters with him.\n
The point is there is so much drama. I try my best to get along with everyone.
I don't understand where I went wrong (bes_besides rep_reply back to his
question). I feel like I'm going crazy because this is a constant battle where
everyone’s frustrations are taken out on each birbir, and It's the children
that are hurting. I had a party planned for my daughter’s birthday, and my ex-
boyildigi told me to cancel those plans because he didn’t let me have her. In
my eyes, it’s the child that is hurting. I was throwing a party for her
birthday, and because of the problem with stupid pick-up details about my
stepdaughter, which I have no control over, he took it out on our daughter.

Figure 8: An inversion example from Mentalhealth consisting of 384 tokens. The missed tokens are highlighted in color.

Table 4: Evaluation of different TBS attack settings for Llama-
3 model.

Table 5: Evaluation results of Qwen2.5 and Qwen2.5-Coder.

Dataset Model Distance Ccs BLEU ROUGE EM F1
Dataset  Size Basis Penalty " s BLEU ROUGE F1 - Qwen2.5 MSE 99.03+0.26  98.90+ 0.18 1.00 12.90+ 0.06  98.90 +0.21
. le-4 9549+ 0.59 64.93+2.90 0.90 76.22 £2.11 Qwen2.5- MSE 99.78+ 0.12  99.60+ 0.13 1.00 64.00+ 0.07  99.80 + 0.06
Unbiased 0 Coder
Se-4  88.79+0.83 27.06+ 2.04 0.66 49.56 £+ 1.65 Qwen2.5-
EC 8B Unbiased 13 le-d 9473+ 128 58.09+ 6.56 0.87 72.48 + 3.70 Coder Ccos 99.96+0.03  99.12+ 0.34 1.00 45.00£0.11  99.47 +0.14
Se-d 90824105 34.20+303 o 34.70£229 CcA QXCZZ.S- MSE 99.86+ 0.08  99.78=+ 0.05 1.00 50.00+£ 0.07 99.82 £ 0.04
SVD o le-4 9587+095 64.34+£3.05 088  73.90 +2.60 oder
Se-4 9820+ 0.49 72.09+3.14 0.91 80.73 £2.22 ng:if- COoS 99.72+ 0.28  99.46+ 0.37 1.00 40.00+0.16  99.76 & 0.08
Unbiased 0 le-4  95.02+£0.70 80.36+ 1.47 0.95 90.63 + 0.75
Se-4  88.59+ 1.66 56.69+ 3.04 0.87 78.53 £1.99
MH 8B ied  les 1o 94795077 77555200 094 88924120
Se4 89094079 59.03£225 088 8030 + 1.08 Surprisingly, we observe that the ISs of Qwen2.5 is easier to
SVD o led4 97644039 86704185 096 9327+ 1.05 invert than Llama-3 models. We hypothesize no impact from
Se-4  98.00+ 0.57 90.24+ 1.24 0.97 94.99 + 0.61 3 (I . . . .
° their pretraining data and investigate the architecture differ-
70B  Unbiased 0 Se-4  95.80+ 1.17 74.17+9.44 0.94 88.34 +5.17

Input Data Type. We observe that the input data type can
influence the inversion performance. In Figure 9, the coding
data are more difficult to be inverted comparing to medical
texts. Notably, the F1 score on coding datasets (92.05 and
94.50) are slightly lower than healthcare dialogue data under
the optimal attack setting. After manual checking of inverted
inputs, we found that the additional errors appear in the de-
scription of coding prompts instead of the main code. This
may indicate that the model knowledge may also influence our
optimization-based inversion attack because of the attention
assignment to tokens of different topics is unequal. Therefore,
in the following we investigate whether the coding-enhanced
model can lead to higher inversion risk.

Evaluation of Domain-specialized Models. We consider
Qwen2.5-Coder as the coding-specialized model because of
its high ranking on the leaderboard [52]. Here we evaluate
the top 50 longest coding prompts from two benchmarks. We
also evaluate Qwen2.5 as a general-purpose model. Table 5
presents the results on two coding benchmarks. First, we
observe that inversion is significantly better: the EM scores
are around 50% for the top long prompts of both benchmarks
and the inverted tokens F1 scores are around 99%. Second,
compared to the general-purpose model Qwen2.5, the coding-
specialized model Qwen2.5-Coder has ISs more susceptible
to inversion attack because of higher EM rates.

ence. We exclude the causes from model width and trainable
parameters up to the middle layer because they are similar
for two models: Qwen2.5 is of width 3,584 and 3.8B param-
eters while Llama-3 is of width 4,096 and 4B parameters.
After carefully examining their implementations, we found
the main difference lies in the attention module: Qwen2.5
applies QKV bias [53] while Llama-3 does not by default.
Therefore, we suspect that attention bias may amplify the fea-
ture representation of ISs thus, as a side effect, enable better
inversion. Due to the huge cost of pretraining to obtain similar
bias for Llama-3, we leave more detailed impact analysis of
attention bias for future work.

Takeaway: On long-context inputs, our optimization-
based attack TBS can invert nearly all tokens in the
correct order to preserver semantics.

5.3 Black-box Inversion Attack

In this section, we evaluate and compare our replication-based
and generation-based black-box inversion attacks.

Attack Settings. We use the prompts from Mentalhealth and
Evolcode for test. For both black-box attacks, we assume the
adversary uses NoRobots [54] as training data for replication
model and inversion model training. NoRobots is composed
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Figure 9: Evaluation of our TBS attack with different learning rates and distance functions (MSE and COS).
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Figure 10: The distribution of autoencoder’s reconstruction
error to detect derivatives of Llama-3.
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Figure 11: Evaluation of model type identification.

of 9.5k+ supervised finetuning samples from general topics,
which aligns with our assumption that the adversary has data
of similar distribution. We consider Llama-3 owned by the
adversary and target Llama-3-Doctor and Llama-3.1 as two
black-box deployed models. In this section we also test ISs
of the middle layer as above.

Model Type Identification. Given unknown ISs, the adver-
sary first identifies the deployed model type. To test the iden-
tify model type, we trained and crawled from Hugging Face 75
finetuned models, 70 merged models and 56 adapters of most
downloading of Llama-3. In addition, we select 13 LLMs
independent models (i.e., those not derived from Llama-3) as
negatives, which are listed in the Appendix A.

Figure 10 demonstrates the distribution of autoencoder’s
Reconstruction MSE (RMSE) on three tested layers. For
each tested layer, we use the test dataset of 500 samples of
NoRobots as the probing data, and train the 3-layer autoen-
coder for 10 epochs. We found that most derivatives have
separate error ranges to the independent models, which en-
ables binary classifications by thresholding. Note that there
are a small number of outliers that can be identified as inde-
pendent model (False Negative). We check the false negatives
and found they are caused by labeling errors based on crawled
model name. Therefore, in the following test, we check the
top downloading derivatives to remove potential errors.

To evaluate the identification of ensemble autoencoders, we

Table 6: Results of the replication-inversion attack.

Test Dataset  Attack Target Basis Ir cs BLEU  ROUGE F1
Doctor SVD  leq S287EL30 098025 022 1479+177
Llama-3.1 56214+ 1.24  1.85+047 029 1933+ 1.66
Transferred le-4  6450+£2.70  6.64+ 1.62 045 32124305
Doctor
MH Unbiased Se-4 5836+ 1.12 090+£0.08 023 17914054
le4 61.19+£2.14 472£076 040  27.53 £ 1.85
Llama-3.1
Sed  63.60£2.10 245+ 051 030 2210+ 135
le-4 72324264 1633+£223 058  43.35+£231
Replicated ~ D°¢OT
('(’)ms) Unbiased Se-4 6674+ 179 554+130 042 3059+ 1.93
le4 6833+£233 491+0.71 045 3076+ 1.01
Llama-3.1
Se-4 6190+ 157 087+£0.16 025  17.53+£0.82
Transferred  DOCOT [ g led 62014170 3.60+0.68 0.27 18.56+£1.60
EC Llama-3.1 le4  63.05+£3.08  2.13+0.46 0.23 15.63£1.60
Replicated  Doctor . le-4 76924231  9.71+1.63 047 29.60+2.17
o Unbiased
©urs) Y jama3.1 le4 62224200  1.91+0.43 0.26 16.74+1.21

additionally crawl the derivatives of Llama-2 and Qwen2.5 in
a similar manner and ensemble the autoencoders of middle-
layer ISs of three LLMs. Figure 11 exhibits the confusion
matrix of model type classification (left) and the ROC curve
with AUC score (right). We found our ensemble autoencoder
can almost perfectly classify the target mode type. Therefore,
the adversary can leverage the publicly available base LLM
to apply the model replication-based inversion.

Replication-based Inversion. We use Llama-3 replicate to
the target models (ChatDoctor and Llama-3.1) on NoRobots
for three epochs with Qlora [55] with learning rate 0.0001.
As for the inversion attack, we use MSE as the loss distance.
Table 6 presents the evaluation of our replication-based in-
version on Mentalhealth and Evolcode, from which we can
make four findings: 1) The use of SVD singular basis can
degrade the attack because of the discrepancy between the
inversion and the target input embedding spaces. 2) The repli-
cated model with a low attack learning rate leads to better
input inversion because of better input embedding alignment.
3) The post-training can offer better protection against inver-
sion than finetuning, as Llama-3.1 is more difficult to invert
input information (e.g., fewer matched tokens as indicated
by lower F1). 4) The distribution gap between the adversary
data and the victim’s queries can degrade the inversion. On
coding data, the improvement from model replication is lower
than on medical texts, as shown under the optimal setting
(ChatDoctor with unbiased basis and 1e-4).

In sum, the optimization-based attack performance is dete-
riorated by limited attack information in the black-box setting
and can be difficult to improve. As discussed earlier, the token
recovery can be sensitive to the cosine difference between the
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Table 7: Black-box inversion on short-context input text.

Dataset Average Length cs BLEU ROUGE EM F1
Instruct-2M 26.16 97.85+£0.24 92.73+ 0.58 0.97 61.384+0.02 96.87 +0.27
Norobot-test 89.04 83.90+ 0.84 5134+ 1.55 0.64 13.00+£0.02  65.76 + 1.44

SyntheticGPT 177.48 93.62+ 0.61 46.98% 1.25 0.67 0.0 72.90 £ 0.88
BLEU ROUGE F1
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Figure 12: Generative inversion on long-context datasets.

inverted and the ground truth embeddings. The Transformer
and input embedding weights of the derived model enlarge
this inverted difference, resulting in worse token recovery.
Next, we evaluate the generative model-based inversion at-
tack which is based on observed ISs as context and can be
more robust to the embedding gap.

Generation-based Inversion. As for inversion model, the
adversary adopts the recent T5-base (T5) [56] as it is one of
the most commonly used encoder-decoder model. We train
T5 with learning rate 0.0002 and trains on Instruction-2M
and NoRobots for short-context and long-context inputs, re-
spectively. We also use SyntheticGPT [20] for short-context
inversion evaluation. To align with replication-based black-
box attack, the deployed model is Llama-3.1 as our target.

Inversion of Short-context Input. We train inversion model
on Instruction-2M for 1 epoch. Table 7 presents the inver-
sion evaluation on short-context datasets. The attack performs
best on the same-distribution test dataset of Instruction-2M
and achieves even better performance than our white-box
optimization-based inversion attack. However, the downside
for generative model is that it can hardly scale to longer
prompts and the performance is susceptible to distribution
shift. As the length increases, the semantic similarity scores
drop significantly on longer SyntheticGPT dataset.

Inversion of Long-context Inputs. To understand the limit of
input length for generative inversion, we train with NoRobots
that contains long-context prompts of up to 3,384 tokens (de-
tailed length distribution is shown in Figure 16). To investi-
gate the impact of training sequence length, we set maximum
sequence length to 128, 256, 512 and 1,024. As NoRobots
only contains 9,485 samples, we train inversion model up
to 3 epochs that counts for similar model update steps to
Instruction-2M for ensuring model convergence.

After training, we evaluate on the top 100 longest prompts

Cs BLEU ROUGE F1

0.75 75 Dataset
50
75 0.50 50 —— Mentalhealth
0 0.25 25 Evolcode

50/
1378910 1378910

Epoch Epoch Epoch Epoch

Figure 13: Evaluation of converged inversion models.

Table 8: Evaluation of generative inversion on 70B model.

Dataset Max Seq. Length [} BLEU ROUGE EM F1
256 87.92+ 045 21504057 050 0.0 55.56 + 0.57
MH 512 9776+£022 7939+ 1.84 088  2.00+0.01 90.75 % 0.90

1024 97.44+0.23  76.26+ 1.82 0.87 1.00+0.01  88.72 £+ 0.90
256 74.85+0.81  3.69+0.22 0.16 0.00 28.524+0.89
EC 512 94.18+ 0.42  20.98+ 0.67 0.42 0.0 60.44 + 1.15
1024 91.74+ 0.55 18.08+ 0.81 0.38 0.0 55.62+1.26

from Mentalhealth and Evolcode with greedy sampling of
maximum length 4,096 to ensure full generation. Figure 12
shows the results from which we can make three observations.
First, we found that the maximum sequence length 256 is
the optimal setting for NoRobots dataset, where shorter or
longer limits can result in worse inversion. Second, too long
sequence limit 1024 can hinder the inversion quality. Third,
the data type plays a central role to accurately invert ISs:
the model cannot generate meaningful inverted texts on cod-
ing prompts (Evolcode) but achieve similar performance as
optimization-based attack on the similar data (Mentalhealth).

Longer Training Epochs. We also observe that the inversion
model only generates prompts until the third epoch, which
may indicate that that more epochs can improve the perfor-
mance. In Figure 13, we extend the epochs to 10 for model
convergence while keeping maximum sequence length 256.
We found that the converged performance on Mentalhealth
is lower than the best performance of optimization-based in-
version as shown in Figure 9 (e.g., 94.99 BLEU and 96.7 F1
on Mentalhealth). On the other hand, the inversion on cod-
ing data does not get improved as medical texts because of
the distribution gap, which further highlights importance of
the same distribution assumption. Appendix B includes more
analysis on failure cases due to the distribution mismatch.

Larger Models. Table 8 validates the effectiveness of the gen-
erative inversion on Llama-3.3-70B model. Compared to pre-
vious smaller LLMs, the optimal maximum sequence length
for inversion of 70B models is doubled: from 256 to 512. In
particular, there are even exact matching cases (e.g., inversion
trained with maximum sequence length 512). We observe
that, despite deeper and wider ISs, more input tokens can be
inverted as signified by higher F1 scores and CS scores. This
result aligns with our previous white-box inversion evaluation
on the 70B model.

Comparison with Optimization-based Inversion. We exam-
ine the generated inversion inputs and qualitatively compare
them with those optimized by our white-box attack. Although
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Table 9: Transferability of generative inversion to Llama-3.

Dataset Max. Seq. Length CS BLEU ROUGE F1
128 86.67+ 043 1035£0.66 045  54.06+ 0.68
Mentalhealth 256 9453+£030 53124171 077  78.56+0.74
512 90.03+£0.36 3271+ 105  0.64 6332+ 062
128 7697+ 081 0.13£005 0.5 2837+ 1.01
Evolcode 256 84.04+076 210£0.19 023  40.63+ .19
512 7478+£083 157+0.06 005 3145+ 1.00

both achieve similar semantic similarity and token matching
score, the reason for failed inversion tokens is different. As
mentioned previously, the optimized inversion inputs may
introduce or replace the true token with noisy tokens of dif-
ferent languages or Unicode which hinders the readability
but also partially reveals the meaning of true inputs. On the
other hand, generative inverted texts contain no noisy tokens
but may miss entirely some sentences, especially those in the
middle or the end of the original input. This is a disadvantage
to the adversary because of potential key information loss.

Transferability. We explore whether the generative inversion
model can directly transfer to the derived target model. We
evaluate the TS model trained on Llama-3.1’s ISs and evaluate
on Llama-3 (see Table 9). The inversion performance is close
to the non-transfer case as shown in Figure 12. This validates
our claim that the generation-based can better tolerate the
embedding gap than the optimization-based attack.

5.4 Defense Evaluation

In this section, we test four practical defenses including DP,
pruning, quantization, dropout and noisy input embedding. In
Section 7, we discuss and provide mitigation suggestions.

Setting. We use Mentalhealth and consider the collaborative
inference server who receives the ISs h{“’ at the middle layer
[ = 16 for Llama-3-8B. The client applies defenses before the
release of ISs for the first-round inference. For attack, we test
the generation-based inversion attack trained for 10 epochs
on NoRobots with the optimal maximum sequence length
256. In terms of utility, we evaluate the model with five-shot
Massive Multitask Language Understanding (MMLU) [57],
which refers to accuracy on the benchmark questions. We
fix the random seed to ensure reproducibility for defenses
involving randomness.

Quantization. We first test the 4-bit and 8-bit model quanti-
zation which, as a common technique to reduce memory cost,
can alter the adversary-observed ISs through through forward-
propagated error to degrade inversion performance. We test
the model quantization and present the results in Table 10
of Appendix A. We note that only 4-bit slightly effect the
MMLU but the inversion quality remains nearly unaffected,
indicating that quantization cannot defend our attack.

Dropout. We apply the dropout on ISs of probability p €
{0.1,---,0.8} that nullifies p elements and scales the rest
by 1/(1— p). As p increases, the MMLU score will firstly
decrease. Meanwhile, we can see that MMLU drops faster
than the CS score. Among the highest dropout probabilities
we tested p > 0.7, the MMLU score is close to the random
guess (~ 0.25) while we can still achieve inversion of CS
score higher than 70. This indicates that dropout cannot fail
our generative inversion while preserving the utility.

Noisy Input Embedding. The defender can blur the input
embedding to obfuscate the ISs. Therefore, we add the noise
following Gaussian distribution of variance 62, and show the
evaluation results in the middle of Figure 14. For low noise
scale 6 < 0.005, there is negligible affect over the inference
and inversion. However, we observe that = 0.01 is a turning
point: the MMLU score become lower than 0.4 while the
inversion is almost unaffected. Our attack can be effectively
defended at high noise scale 6 € {0.05,0.1}, but the MMLU
also decreases to the random guess level. To wrap up, noisy
input embedding cannot achieve a perfect trade-off between
the inference utility and ISs privacy.

Differential Privacy. We add Laplacian noise to the IS to
achieve €-DP: § ~ Lap(0,&/A;), where A, is the sensitivity.
As the maximum value of ISs is not bounded, we clip the h{ v
by Ca, € {200,500}, because we observe the highest ISs are
within this range on Mentalhealth. This makes A; = 2Cy,.

The rightmost figure of Figure 14 shows the inversion per-
formance (measured by CS) and model utility on different
€ and two clipping cases, where the horizontal dotted lines
represent no DP protection. We observe that the blue curves
(inverted text similarity) increase earlier than orange curves
(model utility) in both clipping cases. This indicates that the
adversary can gain advantage with low € that almost nullifies
the model. In other words, with mild drop of model utility
(e.g., € = 5,000 for Cs, = 200), our generation-based attack
remains equally effective.

Takeaway: Our generation-based inversion can achieve
accurate inversion on data of similar distribution and
bypass practical defenses directly applied on ISs.

6 Related Work

In this section, we review applications of IS and inversion
attacks in Natural Language Processing (NLP).

Application of Internal States. Recently, several works have
shown that the IS are strong indicator of hallucination fac-
tual error and safety status, which provide a practical strategy
for LLM holder and regulator to surveil the model behavior.
Azaria and Mitchell first discovered that the ISs can indi-
cate factual errors and found that deep layer’s ISs can train
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Figure 14: Evaluation of defenses including noisy input embedding, dropout and differential privacy with Laplace mechanism.

accurate hallucination detector [7]. The ISs-based halluci-
nation detection can also be achieved by eigenvalues [8],
unsupervised clustering [9] and linear probing [10] to stop
the mistakes on the fly [11]. The middle layer has ISs that
can indicate malicious and benign queries and can be used
as safety layer to defend jailbreak attacks [12]. Additionally,
ISs can reveal latent knowledge [16], membership privacy
of query data [36], emotion [15, 28], internal symbolic cal-
culations [17] and potential backdoors [13, 14]. As more
applications of ISs emerge, the potential privacy risk should
be carefully examined and our work takes the first step to
testify the ISs inversion feasibility.

Inversion Attacks. In addition to the embedding [19] and out-
puts [20, 24], the risk of data inversion also exists for shared
gradient in decentralized learning [58, 59], unlearning [60],
outsourced shallow-layer inference [61] and KV cache [62]
which are the most related works to ours. Nevertheless, our
methods can extend to middle or last layers and can generalize
to KV cache. Note that the side-channel attack to LLM serv-
ing [63] is also similar to our inversion, but leverages timing
difference in accelerated inference. There is also finetuning-
based defenses [38] but is limited to small LMs because of
performance drop for LLMs. Recently, there are concurrent
works [64, 65] attempting to invert prompt from the malicious
server in collaborative learning. As for comparison, our work
includes more comprehensive attacks (white-box and black-
box) and has validated the attack effectiveness on long inputs
(4k+ tokens) and large models (up to 70B).

7 Discussion & Conclusion

We conclude with discussion and future work.

Practical Mitigation. As we witnessed in section 5.4, di-
rectly protecting ISs is still limited to simultaneously offer
both model utility and privacy. The fundamental reason is that
the inference of subsequent layers depends on meaningful
IS values, hence the noise-induced representation obfusca-
tion must preserve sufficient utility by maintaining semantic
coherence. To mitigate privacy leakage caused by ISs, it is es-
sential to safeguard the entire model rather than concentrating
solely on individual layers. One possible direction can be the
exploitation of cryptographic tools or confidential computing.
The homomorphic encryption is a promising solution, but cur-

rent implementations generate unacceptable computational
overhead for deployment [64]. Another countermeasure that
can be immediately taken is exploiting the confidential vir-
tual machine in CPU (e.g., AMD SEV [66]) and GPU (e.g.,
H100 [67]) which can provide confidentiality guarantee and
allow addition obfuscation schemes inside the enclaves to
hinder side channel attacks.

Architecture-based Mitigation. We suspect the equal-width
architecture design may cause our privacy inversion attacks.
Typically, the layer width in conventional classification mod-
els decreases with depth, enabling the compression of input
data and contributing to the emergence of Harmless Space
(HS) [68]. In contrast, Transformer-based language models
have a uniform layer width. This architectural difference may
explain why our attack methods are successful. Thus, a po-
tential architecture-based defense could involve a model with
varying sizes of input embeddings, intermediate states, and
output embeddings, which, by exploiting information loss,
could increase the difficulty of accurate inversion.

Unavailable Ground Truth. In Section 3, the adversary aims
to recover the exact input, but original inputs are generally un-
available in practice, which can make it infeasible to check the
inversion correctness. In practice, for the open-source models,
the adversary can test with surrogate inputs as reference to
ensure constraint. For closed-sourced models, the adversary
can collect input data from their interested distributions for
querying and training the inversion model. The convergence
can guarantee the inversion for in-distribution data.

Limitation. Our optimization-attack is sensitive to the hyper-
parameter and added noises. For example, TBS cannot recover
meaningful inputs even under the highest € we tested because
of noise sensitivity. Future work can enhance this attack by
denoising on DP-protected ISs. Another limitation is the lin-
ear complexity (i.e., O(E)) during optimization, which can
cause longer attack time for larger models. Also, it is possible
to adopt random initialization for optimization-based attacks
to avoid local optima. Appendix B includes more detailed
analysis of failure cases and boundary conditions. To improve
the attack, one of the future direction is to come up with
black-box inversion attack that can also be as context-free
and length-free as the white-box optimization-based attack.
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8 Ethical considerations

Our attacks exploit ISs of models to invert nearly original
sensitive input, posing significant threats to user privacy and
data security. As our research do not involve human partic-
ipants and only use public medical dialogue, Mentalhealth
and coding datasets, the IRB of authors’ intuition, after our
consultation, determined that our research does not require
further review. We acknowledge that exemption from IRB
review may not fully address all ethical considerations, and
have therefore taken the following steps.

Ensuring no harm is caused to stakeholders. The potential
stakeholders include LLM user and LLM service provider
and broader privacy community. To mitigate potential harms
to individuals, by following existing privacy work, we only
select public datasets that are highly-downloaded and appro-
priately anonymized. In addition, we also manually checked
all datasets used in our research to ensure there is no sensitive
information (e.g., PII) exposed in our research. We did not
attack real-world collaborative inference systems, so no indi-
vidual privacy is leaked by our research. As for the models,
we only used opensource models including Llama, Qwenand
TS in our work for compliance with model-use license.

Responsible disclose to service providers. We also share our
findings with main cloud LLM service providers that might
deploy collaborative inference including OpenAl, Meta Al
and Qwen. We recognize that this cannot perfectly mitigate
privacy risks, because our attacks, if known to the public, may
still be misused by the actual collaborative inference server
or IS auditor to recover the user inputs. However, we believe
the benefits of publicizing our attacks outweight the potential
harm. As our work demonstrates the potential privacy risks
of LLM ISs, it will draw increased attention to, not only the
ISs inversion threat, but also the general privacy concerns sur-
rounding LLM service systems. This will encourage the LLM
practitioners to proactively implement well-established solu-
tions like confidential virtual machine within their systems to
offer better privacy protection.

9 Open Science

In compliance with the USENIX Security’s Open Science pol-
icy, we commit to publicly releasing the source code to imple-
ment the attacks, pretrained inversion models on non-sensitive
data in our study upon acceptance of this paper and inversion
logs of main results. As the datasets used in our paper are all
downloadable from Hugging Face, in our artifact we direct
users to the datasets downloading link and provide processing
scripts. We also provide instructions on how to test our attacks
on user’s own data, detailed configuration, program scripts,
hyperparameters and hardware requirements. Our code is re-
leased at https://doi.org/10.5281/zenodo.15605325.
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Figure 15: Visualisation of internal states for mainstream
LLMs. The selected LLMs have the same width 4096 for
dimension reduction using t-SNE.
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A Additional Results

Visualization of Internal States. We applies the t-SNE onto the
ISs of various open-source LLMs across different scales. As vi-
sualized in Figure 15, LLMs rooted from a common pretrained
LLM, have similar ISs. For example, Llama-3 and Llama-2 are
two pretrained models and have separable ISs. That said, it is pos-
sible to train classify the target LLM type simply using the ISs.
To evaluate model type identification of Llama-3, we select the
total 13 LLMs open-sourced before or after Llama-3:Vicuna-7B-
v1.5, GLM-4-9B-chat, Qwen2.5-14B-Instruct, Meta-Llama-3.1-8B-
Instruct, Qwen2.5-7B-Instruct, Qwen2.5-3B-Instruct, Meta-Llama-
3.1-8B (Qlora), gemma-2-9B-it, Llama-3.2-3B-Instruct, Yi-1.5-9B-
Chat, Mistral-7B-Instruct-v0.3, Llama-2-7b-chat-hf, and Mistral-7B-
Instruct-v0.2.

Token length of NoRobots. Figure 16 shows the histogram of token
length of NoRobots. Compared to Instruction2M, we note there are
certain long-context training samples which can be indispensable to
train long-context inversion model, at expense of increased training
time and memory usage.

Quantization Defense. Table 10 shows the evaluation of our genera-
tive inversion on quantized model. We use bitsandbytes for LLM
quantization.

Theoretical Analysis. We investigate the gradient magnitude for
ER and TSB. To simply notation, we denote the target IS of layer /,

h{ ¥ (x)) by h, and consider the adversary optimizes W to approximate
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Figure 16: Distribution of token length of NoRobots.
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Figure 17: Visualization of sampled input embeddings from
Llama-3-8B (left), the singular basis obtained through SVD
decomposition of input embeddings (middle) and unbiased
basis (right).

y; (W) to h. Without loss of generality, we consider the squared £,
norm for the distance d and w € R;fq. The loss function is:

L= d(yr(W).h) = [y (%) ~h]3. ®)
The gradient with respect to W is:

0L N T 9y
ﬁ—z(\lﬁ(w)—h) I ©)

Here, the gradient magnitude of ER depends directly on the residual
error ||y;(W) —h|| and the Jacobian dy; /0w of the first / Trans-
former layers. For TBS, as W = @,(Z- B), the gradient with respect
to z becomes:
0L 0L ow 0dL 0@ (z-B) (10)
0z oW 0z oW az

In the experiments, we set ,(Z - B) = aarctan(z - B), thus the
derivative is

ow o BT
% 1+(zB)?
For small z, the scaling factor o/(1 4 (ZB)?) ~ «, leading to
larger gradient magnitudes compared to the baseline. As z increases,
the factor o/ (1+ (zB)?) — 0, which stabilizes the gradient on bz,
especially for deep model where the Jacobian can vary greatly.
In conclusion, TBS introduces a nonlinear scaling of gradients
through ¢, creating a dynamic where:

Visualization of Input Embedding and Basis. To support the find-
ings of Figure 5, we also visualize the vectors through uniform t-SNE

an

9L
ow

oL

= . (12)

1
°‘1+<€B>2"

dimension reduction. Figure 17 demonstrates that the singular basis
vectors and input embeddings exhibit tight clustering in the repre-
sentation space, whereas the unbiased basis displays significantly
greater dispersion.

B Analysis of Failure Cases

In this section, we analyze the failure cases caused by non-
convergence for our optimization-based attack TBS and by the dis-
tribution mismatch for our generation-based inversion attack.

The failure cases for our white-box attack are commonly caused
by inappropriate settings. For example, too high learning rate may
accelerate the optimization at the beginning but fall into local min-
imum afterwards, as validated by the worse inversion quality in
Figure 9. A failure example of high learning rate 0.001 is shown in
Figure 18, where we can see most inverted tokens are unreadable.
Even there are some keywords recovered, the adversary cannot guess
original inputs.

Besides, due to the complexity of optimization space, we also
observe failure example even under appropriate setting. In Figure 20,
we provide the loss curves for the first four samples of Mentalhealth
during TBS on Llama-3.3-70B. We observe that the Sample 3 en-
countered loss divergence, leading to inversion F1 score 72.91. We
observe that Sample 3 exhibits loss divergence, resulting in the F1
score of 72.91. In contrast, the remaining samples successfully es-
cape local optima despite similar initial loss increases, ultimately
achieving smooth convergence. Given our fixed initialization scheme,
we explore random initialization for as a potential alternative. Em-
pirical evaluation reveals that standard Gaussian noise initialization
degrades convergence speed and ultimately yields inferior inver-
sion performance. Future research directions include developing
bounded random initialization strategies or incorporating dynamic
noise injection during optimization.

Figure 19 illustrates a failure case of generation-based inversion
arising from distributional mismatch. The target text contains SQL
table code that lies outside the inversion model’s training distribution,
resulting in uninterpretable “<unk>" tokens. This demonstrates that
a necessary condition for successful inversion is comprehensive
training data coverage of all target input tokens. Furthermore, the
discrepancy in token distributions between the inversion model’s
training data and target inputs may lead to suboptimal inversion
performance, particularly when significant frequency mismatches
exist for critical tokens.
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Input

... in this negative environment with my child and keep our family together? Do | move away with my child and have my relationship

end? | do not want to take him out of either of his kids’ lives. What do | do?

Inver- | ... in this negative environment withyouranacs and keep ! family together?DoelementGuidldanacs.Aranacsanacs Child and Have
sion |my relationship end lu=l Z 2 not want(cuda take himDECREF JSiaeither 6narop, his kids’s\tdfsf | I 1 1 1 1 | What

nonyyenusl_SL \t\t\n imkan susB

Figure 18: Failure inversion example of TBS attack in MentalHealth.

Input

Inversion

Generate an SQL query to find the average score for each student, but exclude any

students whose average score is below 6. The result should be ordered in
decreasing order of the average score. Table: student_scores | id <unk> student_id
<unk> score <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk>
<unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk>
<unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk>
<unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk>
<unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk>
<unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk>
<unk>

Generate an SQL query to find the average score for each student, but exclude any
students whose average score is below 6.5. The result should be ordered in
descending order of the average score.

Table: student_scores

id | student_id | score |
| |

11 Mm | 5|
20 m | 7|
3] 223 | 6 |

|
|
|
|
I

Figure 19: Failure inversion example of generation-based inversion in EvolCode.
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Figure 20: Loss curves of TBS attack in Mentalhealth.
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