
This paper is included in the Proceedings of the
34th USENIX Security Symposium.

August 13–15, 2025 • Seattle, WA, USA
978-1-939133-52-6

Open access to the Proceedings of the
34th USENIX Security Symposium is sponsored by USENIX.

EKC: A Portable and Extensible Kernel
Compartment for De-Privileging Commodity OS
Jiaqin Yan, Shanghai Jiao Tong University, Southern University of Science and
Technology; Qiujiang Chen, Shuai Zhou, and Yuke Peng, Southern University

of Science and Technology; Guoxing Chen, Shanghai Jiao Tong University;
Yinqian Zhang, Southern University of Science and Technology

https://www.usenix.org/conference/usenixsecurity25/presentation/yan-jiaqin

EKC: A Portable and Extensible Kernel Compartment for
De-Privileging Commodity OS

Jiaqin Yan*†, Qiujiang Chen†, Shuai Zhou†, Yuke Peng†, Guoxing Chen*B, Yinqian Zhang†B

*Shanghai Jiao Tong University, †Southern University of Science and Technology
yan2364728692@gmail.com, {12012211, zhous2021, pengyk}@mail.sustech.edu.cn,

guoxingchen@sjtu.edu.cn, yinqianz@acm.org

Abstract

Kernel compartmentalization through privilege separation is
an effective solution for reducing the trusted computing base
of modern operating systems (OS) with monolithic kernels.
However, existing approaches to kernel compartmentaliza-
tion often depend on higher-privileged software or platform-
specific hardware features, posing challenges to their portable
deployment and practical application.

In this paper, we propose Embedded Kernel Compartment
(EKC), a kernel compartment that embeds itself to a com-
modity OS as a privileged, isolated compartment. EKC is
both portable across multiple ISAs without hardware modifi-
cation and extensible to multiple OSes, even those developed
in different languages. Moreover, EKC can serve both kernel
components and user-space applications, enabling security
critical tasks and providing sensitive data storage.

We implemented a prototype of EKC in Rust, which has
been successfully ported to run on multiple ISAs (RISC-V and
ARM) and extended to be compatible with various OS kernels
(FreeRTOS, rCore, and TinyLinux) with additional security
services. Through comprehensive analysis and evaluation,
the results demonstrate that EKC is a practical and effective
solution for kernel compartmentalization.

1 Introduction

The design of commodity operating systems (OS), such as
Linux [3], FreeBSD [26], and FreeRTOS [17], often adopts a
monolithic kernel architecture, where all kernel components
reside in one single address space. However, as the mono-
lithic kernel grows in size and complexity, the absence of
robust isolation mechanisms significantly expands its attack
surface. Numerous CVEs [24] associated with the commod-
ity monolithic kernels allow one malicious kernel module to
unlawfully acquire kernel privileges, endangering the entire

1The SUSTech authors are affiliated with the Research Institute of Trust-
worthy Autonomous Systems.

Figure 1: (a) Issues with traditional monolithic kernels and
(b) Solution of EKC

kernel memory space and ultimately threatening the confiden-
tiality of sensitive data within the kernel, as shown in Fig. 1.a.
For example, DirtyPT [52] exploits a use-after-free vulner-
ability [23] in the page table management module of Linux
that allows malicious code to arbitrarily modify the memory
map to access the entire kernel memory.

The Principle of Least Privilege (PoLP) [40] serves as a
critical defense mechanism. It mandates that each module
operate with the minimal privileges necessary to perform
its intended functions. Kernel compartmentalization is a key
strategy for implementing PoLP [31]. This approach involves
decomposing the kernel into multiple isolated compartments,
each granted only the privileges required to fulfill its specific
functionality. In such a design, confidential data can be stored
within a dedicated, isolated compartment, thereby restricting
the access privileges of potentially malicious kernel modules
to sensitive information. This effectively delineates bound-
aries between high-risk code and confidential data within the
OS kernel, thereby mitigating the potential impact of vulnera-
bilities in high-risk modules.

USENIX Association 34th USENIX Security Symposium 7487

Kernel compartmentalization has been studied in various
works. HAKC [34] isolates the kernel code and data, relying
on hardware features (Arm MTE [4] and PAC [5]). There-
fore, they can hardly be ported to run on other ISAs, such
as RISC-V and x86. In contrast, software-based approaches,
such as LVDs [36], KernelGuard [53], and SILVER [41], rely
upon privileged system software (e.g. VMM [43]), not only
permitting system software’s complete access to sensitive
data [54], but limiting their applications to only VM-based
settings. Other software-based solutions, such as Nested Ker-
nel [25] and SKEE [15], eliminate the dependency on underly-
ing system software. However, they have largely overlooked
the challenge of restricting access to control registers by de-
privileged kernel compartments [13].

Due to the limitations of existing approaches, we propose
Embedded Kernel Compartment (EKC), a kernel compart-
ment that embeds itself to a commodity OS as a privileged,
isolated compartment with separate code and data regions.
EKC is (1) secure against adversaries with OS kernel priv-
ileges; (2) portable across multiple ISAs without requiring
any hardware modification; (3) extensible to multiple OSes,
even those not developed in the same programming languages.
EKC achieves these properties by successfully de-privileging
the commodity OS kernels with minimal kernel modification
to ensure a set of security invariants. EKC provides a set
of well-defined interfaces, via a restricted gate, for both OS
kernel components and user-space applications, which could
interact with EKC to perform security critical tasks or store
sensitive data. As such, EKC establishes a foundation for a
variety of secure applications, including tamper-proof logs
and cryptographic services, enhancing kernel security and
privacy in diverse computing scenarios.

To validate the concept of EKC, we developed a prototype
in the Rust programming language. Our prototype features
a small trusted computing base (TCB) of less than 10,000
lines of Rust code, the majority of which is written in safe
Rust and verified by the Rust compiler. EKC has been suc-
cessfully ported to multiple RISC ISAs, including RISC-V64,
Arm32, and Arm64. We have successfully deployed EKC on
QEMU [6], Raspberry Pi 4b board [38], and Allwinner D1-H
board [11]. The system has been extended to support multi-
ple OS kernels, including Unix-like OSes (TinyLinux [47],
rcc [8], rCore [7]) and real-time OSes (FreeRTOS [17]). These
OSes are implemented in different programming languages,
including C and Rust.

To showcase its practical applications, we have developed
several security services on EKC, such as a tamper-proof log
[12] for measured boot and a cryptographic service [20] for
WolfSSH [51]. The performance of EKC was evaluated using
UnixBench [10] and RTOSBench [9]. The results indicate that
although EKC incurs some overhead in interrupt handling, the
overall impact on performance in practical scenarios remains
small.

In summary, this paper makes the following contributions:

• It proposes a novel kernel compartmentalization solution
for securely embedding a portable and extensible kernel
compartment into commodity OS kernels.
• It presents the design and implementation of EKC, a Rust-
based kernel compartment that is compatible with multiple
OS kernels and portable to multiple RISC ISAs.
• It provides extensive evaluations of the functionality, per-

formance, and security of EKC to demonstrate the feasibility
of the solution.

2 Background and Concepts

Kernel Compartmentalization. Kernel compartmentaliza-
tion is a specific form of software compartmentalization that
segments the kernel into distinct parts, each with assigned priv-
ileges. This approach enhances system security by isolating
kernel components and strictly regulating their interactions.

As described in [31], kernel compartmentalization can be
abstracted into five fundamental actions: creating/destroying
compartments, calling/returning from compartments, and as-
signing privileges to compartments. For each compartment,
careful consideration must be given to the privileges associ-
ated with its actions, as well as whether it can be accessed or
interrupted by other compartments.

In kernel compartmentalization abstraction, the security
of a compartment is defined by integrity, confidentiality, and
availability. Specifically, a secure compartment must meet the
following criteria:
• The kernel partitioning mechanism must be secure, as com-
partment security becomes irrelevant without it.
• It cannot be directly read or modified by untrusted com-
partments, ensuring confidentiality and integrity.
• Its control flow cannot be interrupted by untrusted compart-
ments, guaranteeing availability.

Additionally, for the first criterion, the security of a kernel
compartmentalization mechanism relies on a critical prerequi-
site: Only trusted programs, such as the hypervisor or VMM,
are permitted to create/destroy compartments and assign priv-
ileges. This ensures that control over compartmentalization is
maintained by highly secure entities.

RISC-V. RISC-V [50] is an open standard ISA based on
RISC principles [46]. Distinguished from other ISAs, RISC-
V operates with an open-source license, granting free access
to anyone. Based on current trends, RISC-V will become the
third mainstream architecture after x86 and Arm [29].

Hardware-Based Privilege Level. Currently, most main-
stream hardware architectures have at least three hardware-
based privilege levels for the supervisor mode, the OS, and
user processes. The privilege levels are raised by traps and
correspondingly lowered by trap returns. Their designations
vary across different mainstream architectures [1, 45, 50]. In

7488 34th USENIX Security Symposium USENIX Association

general, they are:
• User Level: called Ring 3 in x86, EL0 in Arm/Arm64 and
U-mode in RISC-V.
• OS Level: called Ring 0 in x86, EL1 in Arm/Arm64 and
S-mode in RISC-V.
• Supervisor Level: does not exist (or called SMM [1] in
Intel) in x86, called EL3 in Arm/Arm64 and M-mode in
RISC-V.
The terms User Level, OS Level, Supervisor Level will be

used to refer to these three types of hardware privilege levels
in the following description, without loss of generality across
different hardware architectures.

Regardless of architecture, commodity OS kernels typically
operate at a uniform OS Level, which may contain potentially
malicious modules. In addition, since the basic x86 architec-
ture lacks a dedicated Supervisor Level, EKC is designed to
operate without necessarily relying on it.

Memory and Interrupt Management. Most mainstream
hardware architectures handle memory and interrupt using
the same set of control and status registers as follows:
• Root Page Table Register (RPTR). This register serves the

dual purposes of enabling address translation and storing the
first-level page table base address.
• Interrupt Vector Table Register (IVTR). This register stores
the address of the S-mode interrupt handler.
• Interrupt State Register (ISR). This register controls the
enabling of different types of interrupts.
These registers have distinct names in different architec-

tures [1, 45, 50], as summarized in Table 1.

Table 1: Register names related to memory and interrupts in
different hardware architectures

Register x86 Arm/Arm64 RISC-V
RPTR CR3 TTBRx satp
IVTR IDTR VBAR stvec
ISR IF CPSR/DAIF sie

Without loss of generality across hardware architectures,
the acronyms RPTR, IVTR, ISR will be used in the following
description.

Rust. Rust [33] is a programming language with a rich type
system and ownership model, which guarantees most of the
safety features such as memory safety and thread safety. As
a result, Rust avoids most potential program vulnerabilities
and is used to build reliable and efficient software. Neverthe-
less, in specific cases of functional requirements, unsafe Rust
is employed to circumvent the compiler’s constraints. Con-
sequently, additional technologies such as code analysis are
indispensable for ensuring the security of the code in these
cases. There has been a lot of work devoted to analyzing
unsafe Rust [16, 32].

3 Overview

3.1 Motivation
In a commodity kernel, all modules share the same privilege
level, allowing malware to access the entire kernel memory
space if one component is compromised. Kernel compart-
mentalization is an effective solution to this problem [31].
It safeguards sensitive data from kernel vulnerabilities and
malicious code by elevating a specific kernel compartment to
a higher privilege level, granting it access to sensitive data.
Meanwhile, other compartments, which contain potentially
untrustworthy code, are assigned a lower privilege level and
are inaccessible to sensitive data.

Existing work on kernel compartmentalization has many
limitations. First, many existing solutions rely heavily on priv-
ileged software support [19,36,39,41,53] or hardware features
[15,30,34], leading to deployment challenges. Cross-platform
operating systems, including Unix-like systems [3, 8, 26] and
real-time systems [17, 55], frequently encounter pervasive
memory security issues. Implementing a distinct kernel com-
partmentalization scheme for each platform in such systems
incurs significant costs while providing limited benefits. Fur-
thermore, users encounter difficulties in selecting a compart-
mentalization scheme that aligns with the requirements of
their specific platforms and production environments, render-
ing platform-specific solutions impractical for widespread
adoption.

Second, many solutions only reduce the OS’s attack sur-
face without taking user processes into account [25,28,34,36].
However, in many confidential computing scenarios, user pro-
cesses have confidential computing requirements that must
be enforced against an untrusted kernel. [18, 48]. The user
usually needs a higher level of security module to enforce
data privacy.

Finally, most existing kernel compartmentalization solu-
tions are theoretical architectures centered around the idea of
decoupling an OS kernel [14, 25, 35] or sandboxing kernel
modules [28, 36]. However, based on our analysis of most
commodity OS implementations, we propose that it is feasible
to design an embedded compartment that can be reused across
various OS kernels. This compartment would manage all other
compartments, reducing the deployment costs of kernel-level
compartmentalization mechanisms while delivering greater
overall benefits.

Therefore, EKC is motivated by the limitation of existing
kernel compartmentalization schemes and aims to achieve the
following design goals:

• Security. EKC should be a secure compartment that runs
alongside the OS kernel at the OS level. Only trusted parts
could create compartments and assign privileges to com-
partments. EKC’s confidentiality, integrity and availability
should be enforced against untrusted parts [31].
• Compatibility. EKC is designed with minimal reliance

USENIX Association 34th USENIX Security Symposium 7489

Table 2: Privilege model

EKC OS kernel User Process
User space R/W R/W2 R/W/X
OS space R/W R/W/X
Trampoline R/W/X X X
EKC space R/W/X
1 R=Readable, W=Writable, X=Executable
2 EKC can assign OS-inaccessible pages to users.

on hardware features or specific software configurations,
which allows for easy portability across different platforms
and ISAs. EKC can be embedded to work with various OS
kernels and integrate distinct security services as needed.
• Efficiency. EKC should deliver low overheads while main-
taining strong security guarantees, ensuring that enhanced
protection does not compromise performance.

3.2 Threat Model and Privilege Model

In our threat model, EKC is assumed to be part of the trusted
computing base (TCB), which is trusted to be free of ex-
ploitable vulnerabilities. This relies both on the safety guar-
antees provided by the Rust programming language and any
security audits performed on the assembly code and unsafe
Rust within EKC. Both the OS kernel and the user process
are untrusted. The OS kernel could be exploited by loading
malicious kernel modules or hijacking its control flows.

The adversary’s goal is to compromise the confidentiality
and integrity of EKC by exploiting a compromised compart-
ment (e.g., the OS kernel or the user process). The adversary
may exploit any design flaws in EKC to breach the isolation
boundary and access the memory space of EKC. However,
physical attacks and side-channel attacks are out of scope.

Our privilege model enforces the principle of least privi-
lege [44] by ensuring that each compartment operates with
only the minimal privileges necessary for its functionality. As
shown in Table 2, EKC has the full privilege to access and
manage all compartments. The OS kernel and the user process
are restricted to their own space. If desired, EKC can be con-
figured to assign pages that are inaccessible to the OS kernel
to the user process. Both EKC and the OS kernel can access
the Trampoline; however, only the EKC is authorized to mod-
ify it. All memory accesses and instructions must adhere to
the appropriate privilege level.

3.3 Challenges

The challenges and insights encountered during the develop-
ment of EKC are summarized as follows.

C1: De-Privileging the OS kernel. EKC and the OS ker-
nel both operate at the OS Level. To ensure security, EKC

must effectively de-privilege the OS kernel, preventing it from
breaching the boundary between itself and EKC.

Solutions: EKC de-privileges the OS kernel by restricting
its direct access to page tables, trap handlers, and physical
memory. (see Sec. 4)

C2: Serving both the OS kernel and the user process. Both
of them need services from the secure compartments to en-
force their data security, including user process.

Solutions: We define a set of standardized interfaces be-
tween EKC and the OS kernel, referred to as the EKC API,
which requires only minimal modification to the OS kernel to
ensure compatibility. To align with existing Application Bi-
nary Interfaces (ABIs), EKC provides services to user process
via an interrupt-based Service Call (see Sec. 5.3).

C3: Securing EKC. Since EKC is part of the TCB, it is es-
sential to ensure that its implementation is free of exploitable
vulnerabilities.

Solutions: We implement EKC using the Rust program-
ming language, leveraging its memory safety and thread safety
guarantees to minimize attack surfaces. Additionally, EKC
features a small TCB size, which facilitates easier security
validation. We have conducted a security analysis of EKC’s
unsafe Rust and assembly code (see Sec. 7.1).

C4: Modularizing EKC for compatibility with various
OSes and ISAs. EKC is designed as a cross-platform archi-
tecture capable of supporting a variety of OS kernels. More-
over, embedding EKC should minimize its impact on the
underlying OS.

Solutions: EKC leverages only common hardware features
and provides standardized interfaces to OS kernels. EKC and
OS kernels are decoupled; they do not share a heap or stack
and do not need to be compiled or linked together (see Sec. 5).

3.4 Applications
EKC is expected to provide secure applications for both the
OS kernel and the user process. Some applications are listed
below.

Tamper-proof logs. Recording detailed logs of security-
related system events is crucial for system auditing [12]. In
EKC, the Entry/Exit Gate plays an essential role in control
flow transfer. When the OS kernel requests EKC to modify
crucial parameters, the Entry/Exit Gate records the operation
in the EKC space. This log can be queried by the user process
to promptly detect malicious behavior in the system.

OS kernel measurement. EKC calculates the SHA-256 of
the OS kernel at boot time and stores it in EKC. The OS
kernel cannot modify this hash value while the user process
can request it from EKC. This application ensures that the OS
kernel image remains unaltered during system boot.

Crypto services. EKC serves as an ideal component that
provides cryptographic operations for the user process, such

7490 34th USENIX Security Symposium USENIX Association

as encryption and hashing, in accordance with cryptographic
service provider standards like PKCS#11 [20]. Cryptographic
software can leverage this service to protect private keys in
EKC and perform encryption and signing, as used in protocols
such as SSL and TLS.

Kernel compartmentalization. The OS kernel is de-
privileged by restricting its ability to create/destroy the com-
partments and assign privileges. Further separation with the
least privilege can be achieved by managing compartment
creation and destruction at runtime, as discussed in Sec. 5.1.

4 Security Invariants for EKC

To ensure the security of the compartmentalization mech-
anism and establish EKC as a secure compartment, three
invariants must be enforced.

Invariant 1: EKC manages address translations.

This invariant de-privileges the OS kernel in address space
management, ensuring that EKC is the sole compartment
with permissions to create, destroy, and assign privileges to
other compartments. Inv. 1-1 to Inv. 1-3 enforce Invariant 1 by
leveraging address translation to confine a dedicated memory
region for page table management. This ensures that no other
compartments can access them.

Inv. 1-1: Only EKC can configure the Root Page Table
Register (RPTR). Under the premise that only virtual ad-
dresses can be accessed, this sub-invariant restricts the OS
kernel from using page tables not explicitly provided by EKC.

Inv. 1-2: Page tables managed by EKC are inaccessible
to the OS kernel. EKC manages page tables in a dedicated
memory region that is inaccessible to the OS kernel via virtual
address or physical address. This ensures that the OS kernel
cannot modify the address translations maintained in these
page tables.

Inv. 1-3: The OS kernel can modify address translation
through well-defined APIs provided by EKC. To effec-
tively handle memory management requests from the OS
kernel, EKC must provide well-defined APIs that permit le-
gitimate operations, while preventing unauthorized actions,
such as illegal access to page tables.

Invariant 2: EKC mediates all trap events.

This invariant de-privileges the OS kernel in trap handling,
ensuring EKC’s control flow integrity and providing secure
applications for user process. Inv. 2-1 through Inv. 2-3 support
Invariant 2 by guaranteeing that EKC always inspects traps

first while leaving routine interrupt handling to the OS kernel
unaffected.

Inv. 2-1: Only EKC can configure the trap handler in the
Interrupt Vector Table Register (IVTR). EKC initially con-
figured IVTR to guarantee that whenever an interrupt occurs,
the control flow should be first transferred to EKC for security
scrutiny. This sub-invariant ensures that the OS kernel cannot
bypass EKC to redirect the trap into itself.

Inv. 2-2: Traps triggered by EKC are handled within
EKC. Allowing the OS kernel to handle interrupts triggered
by EKC directly could violate EKC’s control flow integrity.
This sub-invariant eliminates such risks by requiring that,
when EKC is executing, it must either handle interrupts itself
or disable them.

Inv. 2-3: Traps occurred outside EKC are delegated to
the OS kernel. Although all traps transfer control flow to
EKC first, most of them need to be handled by the OS kernel
(e.g., timer interrupts). EKC delegates the handling of these
traps to the OS kernel, reducing the attack surface of EKC.
Remarks. To protect secure applications from the OS kernel,
as discussed in Sec. 3.4, EKC can incorporate additional trap
handling routines to directly handle traps triggered by these
applications.

Invariant 3: EKC’s memory space is inaccessible
to the OS kernel.

This invariant ensures that the OS kernel is de-privileged
from modifying EKC’s memory, via either virtual addresses
mapped to EKC’s physical addresses or accessing these phys-
ical addresses directly. Inv. 3-1 through Inv. 3-3 are used to
support Invariant 3, by preventing the OS kernel from access-
ing EKC’s memory.

Inv. 3-1: The virtual address of the EKC is inaccessible to
the OS kernel. EKC’s virtual address space is isolated from
the OS kernel by ensuring that no virtual address in the OS
kernel ’s page table maps to EKC ’s physical memory.

Inv. 3-2: The physical address of EKC is inaccessible to
DMA (Direct Memory Access) devices. Since EKC only
controls the page table to restrict virtual address access, addi-
tional mechanisms are required to prevent unauthorized DMA
access to EKC’s memory.

Inv. 3-3: No specialized instructions exist to perform
DMA. In some hardware architectures, there exist special-
ized instructions that can directly access physical address
space. EKC must incorporate targeted solutions specific to
such architectures.

All the sub-invariants collectively serve as sufficient con-
ditions to guarantee the security of EKC. Therefore, the fol-
lowing chapters will focus on satisfying all sub-invariants to
address C1.

USENIX Association 34th USENIX Security Symposium 7491

Figure 2: Overall design of EKC

5 Design

To ensure compartmentalization security, EKC must comply
with all invariants previously discussed in Sec. 4. As illus-
trated in Fig. 2, EKC consists of two main components: the
compartment management module and the gate module. The
compartment management module efficiently manages all
page tables and page frames, enforcing Inv. 1-1, Inv. 1-2,
Inv. 2-1, Inv. 3-1, Inv. 3-2 and Inv. 3-3. The gate module,
comprising the Trap Gate and the Entry/Exit Gate, serves as
the primary communication channel with external systems,
enforcing Inv. 1-3, Inv. 2-2, Inv. 2-3. The service module,
although it does not enforce any invariants, can provide com-
prehensive security services for user processes. Developers
can implement custom built-in service modules to support
specific kernel-level functionality.

To address C4, the port module is designed to support
a wide range of hardware platforms and instruction sets. To
enable secure service integration and the functionality of EKC
API, supporting libraries are implemented in both Rust and
C/C++. These libraries facilitate EKC’s adaptation across
multiple operating systems, including various Unix-like and
real-time systems.

As outlined in section 2, a kernel compartmentalization
mechanism involves five key actions: creating/destroying
compartment, assigning privilege, and calling/returning from
compartments. Therefore, the EKC workflow, structured
around these actions, will be detailed in the subsequent parts
of this section. The sections in which these invariants are satis-
fied are briefly summarized in Table 3 and further elaborated
upon in the following subsections.

5.1 Creating EKC Compartment

In the original OS kernel startup process (depicted in Fig. 3.a),
four kernel modules are initialized sequentially before the

Table 3: Summary of security invariants

Invariant Solution Section
Inv. 1-1 External support available 5.2
Inv. 1-2 Restrict page table mapping 5.1
Inv. 1-3 Well-defined interfaces via the Gate 5.3
Inv. 2-1 External support available 5.2
Inv. 2-2 Trap handler design 5.3
Inv. 2-3 Trap delegation design 5.3
Inv. 3-1 Restrict page table mapping 5.1
Inv. 3-2 MMIO address translation enabled 5.2
Inv. 3-3 Instruction Scanning 5.2

control returns to the initial user process. In contrast, during
the OS kernel startup with EKC (shown in Fig. 3.b), the OS
kernel initializes its page table via EKC API instead of directly
configuring the MMU and sets up a trap delegation handler
in place of a traditional trap handler. After initialization, any
privileged operations required by the OS kernel must invoke
EKC API to communicate with and return control from EKC.

In EKC’s initialization, various compartments are created.
To comply with C4, this startup process is designed to mini-
mize its impact on the OS kernel’s initialization. EKC ensures
that the creation of compartments interferes minimally with
the standard initialization routines. As illustrated in Fig. 3.b,
the startup process comprises three stages:

• Page table initialization: EKC initializes two independent
page tables. The first is dedicated to EKC, granting access
solely to its own space. The second is allocated to the OS ker-
nel, which lacks access rights to the EKC space but retains
full access to its own OS kernel space.
• Trap initialization: EKC registers a global trap handler and
configures trap delegation handler from the OS kernel.
• Gate initialization: EKC initializes all implemented Appli-

7492 34th USENIX Security Symposium USENIX Association

Figure 3: (a) Commodity OS startup; (b) Commodity OS
startup with EKC

cations components, such as tamper-proof logs and crypto
services. Syscalls with IDs greater than 0x400 are reserved
as Service Call, enabling access to these services.

After the startup process, EKC uses the Exit Gate to trans-
fer control to a predefined address, corresponding to the OS
kernel’s entry point. This transition involves constructing a
proxy context with the same parameters as those provided
by the firmware, ensuring minimal modifications to the OS
kernel.

In summary, three key tasks must be completed during
EKC’s startup to create a compartment:

• Create page table for EKC and the OS kernel. As shown
in Fig. 4, the physical address space is divided into three dis-
tinct regions: EKC space, OS kernel space, and Trampoline.
EKC initializes two separate page tables, each representing
the memory space of a distinct compartment. These page
tables assign different access rights to each memory region.
• Configure the compartment domain ranges. To support
Inv. 3-1, EKC ensures that OS kernel’s virtual address is
never translated to a physical address within EKC space.
This prevents OS kernel from accessing EKC’s compartment.
Additionally, to support Inv. 1-2, the physical address of
any page table must reside within EKC space, which de-
privileges OS kernel and prevents it from accessing the page
tables.
• Establish Entry/Exit Gate and Trap Gate, then return

to the OS kernel. EKC initializes the trap handler using trap
delegation in Trampoline, ensuring that the handler cannot
be replaced. This design prevents the OS kernel from inter-
rupting EKC while allowing user process to invoke and re-
turn from EKC. Next, EKC initializes the Entry/Exit Gate in
Trampoline, enabling OS kernel to call and return from EKC.
The Entry/Exit Gate manages the page tables, control flow,
and context switch under kernel privilege. Consequently, a
proxy context is established for both EKC and the OS kernel,
with the Entry/Exit Gate responsible for securely switching
between them.

5.2 Assigning/Restricting Privilege

As outlined in the invariant properties (Sec. 4), access to RPTR
and IVTR must be restricted to satisfy Inv. 1-1 and Inv. 2-1.
Additionally, restricting direct access to physical addresses is
necessary to support Inv. 3-2 and Inv. 3-3. Achieving these
requirements necessitates external support. We propose two
solutions: instruction scanning or the use of hardware-assisted
mechanisms.

Solution 1: instruction scanning. Since EKC has full control
over the page tables, it can identify pages with executable
permissions and inspect the instructions they contain. Any
instructions that attempt to access RPTR, IVTR, or perform
DMA operations can be removed. Instruction scanning is a
widely adopted approach on mainstream platforms, though it
may be less efficient compared to hardware-assisted methods.

Solution 2: hardware-assisted mechanisms. Specific hard-
ware features can be leveraged to address the requirements of
Inv. 1-2 and Inv. 2-2. For instance, Arm64 provides two TTBR
registers, allowing EKC to exclusively use one for secure ad-
dress translation. Similarly, RISC-V offers the TVM feature
that restricts OS kernel from accessing the RPTR register.

For Inv. 3-2, the Input-Output Memory Management Unit
(IOMMU) plays a critical role in isolating the address of
DMA-capable I/O devices from unauthorized memory re-
gions. When a device supports DMA with IOMMU, the
MMIO address space of the DMA remapping unit is never
mapped in the OS kernel’s page table. Consequently, the
IOMMU, under EKC’s control, ensures that EKC space re-
mains inaccessible.

On platforms that support extended ISAs with DMA capa-
bilities, the only viable approach may involve inspecting the
corresponding hardware extension features provided by the
ISA to identify suitable hardware-assisted mechanisms.

5.3 Calling/Returning from EKC

In EKC architecture, there are three kinds of control flow
transfer among the three roles:
• user process traps into OS kernel (e.g., syscall).
• user process traps into EKC (e.g., using Applications).
• OS kernel accesses EKC (e.g., allocating pages).

The Entry/Exit Gate facilitates call and return between any
two roles. It ensures that privilege switching and control flow
transfer are performed atomically, maintaining consistency
and security during the process.

Privilege Switching between EKC and the OS kernel via
Entry/Exit Gate. In EKC architecture, the Entry/Exit Gate
is responsible for modifying RPTR, enabling privilege level
transitions through context switching and updating the root
page table address, as illustrated in Fig. 4. The page table
used during EKC execution grants read and write access to

USENIX Association 34th USENIX Security Symposium 7493

Figure 4: Privilege separation and switching via Entry/Exit
Gate between EKC and the OS kernel

Figure 5: Control flow management in EKC

the entire address space. However, the OS kernel is prohibited
from accessing EKC or modifying the Trampoline.

The Entry/Exit Gate is accessible to the OS kernel as it is
mapped to the virtual address of the Trampoline, with read
and execute permissions explicitly granted by EKC. To satisfy
the requirements of Inv. 2-3, the Entry/Exit Gate disables all
interrupts during EKC execution.

Privilege Switching between EKC and user process via
Trap Gate. To satisfy C2, EKC provides a Trap Gate for user
process. The Trap Gate is an assembly code segment within
the Trampoline responsible for managing interrupts. When an
interrupt occurs, the Trap Gate examines the trap context to
determine whether the interrupt should be handled by EKC.
If so, it invokes the Entry/Exit Gate and subsequently returns
control to user process.

Privilege Switching between OS kernel and user process
via Trap Delegation. When the trap context indicates that the
OS kernel should handle an interrupt, the Trap Gate executes a
trap delegation procedure. This dynamic mechanism supports
Inv. 2-2. If EKC generates an interrupt, the Trap Gate must
disable trap delegation during EKC execution to satisfy the
requirements of Inv. 2-3.

Control Flow Management. Consider all the three privilege
switching schemes above together, the complete control flow
management process involving these gates is illustrated in
Fig. 5.

For traps from user process to the OS kernel, a trap del-
egation mechanism is implemented via the Trap Gate. The
trap first enters EKC, which then delegates it to the OS kernel.

The OS kernel processes the trap and returns control directly
to user space.

For traps from user process to EKC, Service Call is a set
of syscalls managed by EKC rather than OS kernel. These
syscalls allow the user process to request specific security
operations from EKC. Developers can implement syscall
handlers in EKC, accompanied by the corresponding drivers
in the user library.

To support Inv. 1-3, EKC provides a set of interfaces
through the Entry/Exit Gate, collectively referred to as EKC
API, which is invoked when control flow transfers from the
OS kernel to EKC,. To satisfy the requirements of C4, the
EKC API is standardized in a syscall-like format and provides
a range of functionalities to support the basic memory man-
agement needs of the OS kernel, such as page table activation
and page table frame allocation. Additionally, the EKC API
can be leveraged to provide security-related applications for
the OS kernel.

5.4 Runtime Compartments Management

Creating/Destroying Compartment at Runtime. The OS
kernel can request the creation or destruction of compartments
through the EKC API. EKC rigorously verifies the validity
of all requests to ensure that they do not compromise the
integrity of the compartmentalization mechanism.

When the OS kernel attempts to create more compartments
using the EKC APIs, it must provide the following informa-
tion:
• The owner process of the new compartment.
• The address space range allocated to the compartment.
• The initial context (or binary file) for the compartment.

EKC verifies that the address area is not occupied by other
existing compartments and updates the page table mappings
accordingly. Once validated, EKC prepares a dedicated con-
text and page table for the new compartment. When an inter-
rupt occurs, the Trap Gate always switches the context to the
OS kernel to handle the interrupt.

Updating Compartment Privilege at Runtime. Depending
on the security level of each compartment, EKC supports con-
figurable privilege rules as follows: (1) The private memory
region of a compartment must not be mapped by other page
tables. (2) The page table of a compartment must not map
memory outside its assigned private region.

In the basic EKC architecture, rule (1) is enforced by EKC,
while the OS kernel imposes no such restrictions. As the
highest-privileged compartment, EKC can access any other
compartment but cannot be accessed by other compartment.
EKC is responsible for assigning individual privileges to each
compartment and ensuring that the mapping rules are updated
accordingly to enforce isolation.

Calling/Returning from different OS Compartments at

7494 34th USENIX Security Symposium USENIX Association

Runtime. In EKC, page tables with different mapping rules
are treated as distinct compartments. Therefore, switching
between page tables with different mappings is equivalent to
transferring control flow to a different compartment.

To implement call/return semantics, the OS kernel invokes
the EKC API to switch to the target page table and register
context, then jumps to a fixed address within the destination
compartment. Several arguments are passed into the com-
partment based on the caller’s register context. The target
compartment must register a handler at the designated entry
point to process the incoming call.

6 Implementation

In this section, more details of EKC implementation are pre-
sented in order to explain how EKC is implemented and de-
ployed in various ISAs and OSes.

6.1 Compartment Management Module

Compartment Memory Management. As shown in Fig. 6.b,
assuming that the firmware base address is BASE, the EKC
image is loaded at BASE+OFFSET1, and the OS kernel at
BASE+OFFSET2, where OFFSET2>OFFSET1. The bootloader
jumps to BASE+OFFSET1, which is the entry point of EKC.

In the EKC mapping (Fig. 6.a), the EKC space’s virtual
address is identically mapped to physical memory, ranging
from BASE+OFFSET1 to BASE+OFFSET2. This region contains
the EKC binary and critical runtime components such as page
tables, the EKC stack, and the trap handler. Similarly, the
OS kernel space is also identically mapped, starting from
BASE+OFFSET2. The Trampoline has three pages with the
largest virtual page numbers, containing the Entry/Exit Gate,
the Trap Gate, and the proxy context, respectively. These
pages are mapped to the code regions of EKC.

In the OS kernel mapping (Fig. 6.a), the entire OS ker-
nel space is also identically mapped, allowing the operating
system to boot normally. The Trampoline is also mapped
but with execute-only permission. During execution, the OS
kernel may configure virtual memory by calling EKC via
Trampoline. It cannot map any physical memory that falls
within the reserved EKC memory region.

Compartment Privilege Control. As mentioned in Sec. 5.2,
modifications to RPTR and IVTR by the OS kernel must be pro-
hibited to ensure that EKC is the only compartment permitted
to assign privilege to other compartments.

EKC addresses this challenge via instruction scanning [27].
Instruction scanning is a portable and efficient way to identify
undocumented or faulty CPU instructions. Before EKC as-
signs executable permissions to a page table of the OS kernel,
the compartment management module performs instruction
scanning to verify all instructions in the page. Upon successful
verification, the page is marked as read-only and executable.

Figure 6: An address space management (a) Physical address
space (b) EKC mapping (c) OS kernel mapping

To enforce this protection mechanism, EKC enforces two
additional restrictions on page table management:
• Instruction scanning is conducted on every executable page.
If the compartment management module identifies instruc-
tions that attempt to update RPTR, ISR, IVTR, the page would
be considered invalid and rejected by EKC.
• The W ⊕X is strictly enforced. A physical page frame can-
not be writable and executable at the same time. Once a
physical page is marked as executable, the writable permis-
sion is removed from all corresponding virtual pages.

While the instruction-scanning-based solution is effective,
a hardware-assisted alternative is available on RISC-V. The
RISC-V ISA provides more efficient and direct control over
RPTR and IVTR via the Trap Virtual Memory (TVM) bit and
trap delegation logic. When the TVM bit is set, modifica-
tions to satp in S-mode will raise an interrupt handled by
OpenSBI. The RISC-V trap delegation mechanism ensures
that OpenSBI has priority in handling such traps.

6.2 Gate Module

Entry/Exit Gate. As introduced in Sec. 5.3, the Entry Gate
must complete the following tasks sequentially and atomi-
cally to protect the control flow integrity:
• Disable timer and software interrupts.
• Switch the context from OS kernel to EKC.
• Switch to the page table of EKC.

After these, EKC handles control flow in the correct priv-
ilege level. Similarly, the Exit Gate reverses all the actions
above atomically to return OS kernel.

We can utilize RPTR to implement a hardware agnostic
approach to ensure the atomicity of the execution of the gates.
As illustrated in Alg. 1, RPTR will be set to an invalid memory
address first. Since the translation look-aside buffer (TLB) is
not cleaned immediately after modifying RPTR, TLB ensures
that the code executes normally. Then the Entry Gate loads
EKC context and RPTR of EKC. After swapping to new RPTR,

USENIX Association 34th USENIX Security Symposium 7495

EKC handles requests of OS kernel. If OS kernel directly
jumps to <label 1>, targeting to switch page table without
switching context, RPTR conflicts with the predefined value
and the system panics. With RPTR and TLB, the atomicity of
the Entry Gate is ensured.

Algorithm 1 Entry Gate implementation
Input: params for call_ekc from OS
Output: NO RETURN

RPT R← 0
ctx = load_EKC_context()
<label 1>
a0← get_pagetable_address_ f rom(ctx)
swap(RPT R,a0)
if a0 != 0 then

panic()
end if
clean_T LB()
call_ekc(params)

EKC API. EKC builds an EKC API vector table, which
contains the address of EKC API’s handlers in Trampoline.
EKC API uses a syscall-like design: The value in a7 register
is EKC API id, which is used to query the handler’s address
in the EKC API vector table. The OS kernel is responsible
for preparing parameters in a0-a6 register for a specific EKC
API and jumping to the Entry Gate. The Entry Gate handles
the privilege switching and transfers the control flow to the
handler program defined in the EKC space.

Trap Gate. In the trap initialization, OS kernel sets the trap
delegation handler via EKC API. As shown in Alg. 2, the Trap
Gate verifies interrupt type first. For Service Call, Entry/Exit
Gate will be triggered immediately and EKC handles the
interrupts. Other traps are delegated to the handlers in OS
kernel. The Trap Gate in the Trampoline is marked as execute-
only for OS kernel.

Algorithm 2 Trap Gate implementation
Input: ctx from caller
Output: handler return value

t = interrupt_type()
if t is Service Call then

a0 = EKCAPI_TY PE_INT R
ret = EKC_apicall(a0,ctx)
return ret

end if
OS_handler = f etch_con f ig(OS_HANDLER)
ret = OS_handler(t,ctx)
return ret

Service Call. In this system, Service Call is defined as a sys-
tem call whose syscall ID exceeds 0x400, distinguishing it

from standard system calls. Service Call is utilized to imple-
ment security applications, such as cryptographic service and
tamper-proof logs.

To prevent EKC API and Service Call from entering unde-
fined states, the following basic principles, as suggested by
the Principle of Least Privilege [44], should be applied when
checking parameters from OS kernel and user process:
• Null and invalid pointer validation.
• Pointers must not point to address in EKC memory space.
• When a pointer is encountered, the data it references should
be copied into EKC memory space before usage.
• EKC cannot be accessed concurrently by multiple cores.

6.3 Port Module
The Port Module is a component of EKC responsible for
adapting EKC to different ISAs. Therefore, the Port Module
is highly ISA specific. Majority of the unsafe Rust code and
assembly code of EKC resides in this module.

Elements in the Port Module. The Port Module specifies
the following parameters of EKC:
• Memory Layout: The physical address range of EKC and
OS kernel, and the entry address of OS kernel.
• Platform-specified configuration: The format of PTEs and

instructions for reading/writing RPTR, IVTR, ISR, as well as
the implementation of the Entry/Exit Gate and Trap Gate.
• Device drivers: The device drivers for specific hardware
(e.g. character devices, TPM).

Instruction Scanning Rules. Although instruction scanning
is a general solution, different instruction sets and different
ISA extensions require distinct scanning methods. Therefore,
providing appropriate rules for the corresponding platform
is a prerequisite for the removal of illegal instructions. We
implemented two scanning rules for Arm and RISC-V. When
the following kinds of instructions are found in any executable
pages of OS kernels, it would be removed:

Arm RISC-V
write RPTR MCR p15, 0, *, c2, c0, * csrrw stvec, *
write IVTR MCR p15, 0, *, c12, c0, 0 csrrw satp, *

’*’ means any register or any number.

6.4 Guidelines for Embedding EKC
This section outlines the key steps for developers to integrate
EKC into a general-purpose OS kernel.

Boot Process. First, modify the kernel entry point defined
in the linker script. Instead of using the default address
provided by the bootloader, it is explicitly set to the address
defined by EKC.

7496 34th USENIX Security Symposium USENIX Association

Next, EKC-ALLOC should be invoked in the entry assembly
file, which is initially marked as R/W . This allows for rapid
initialization of the early page table and mapping of critical
memory regions such as MMIO. During subsequent kernel
initialization, any direct modification to satp should be re-
placed with a call to EKC-CONFIG, and the trap handler should
be modified to comply with the trap delegation format.

Memory Management. For OSes with page table support,
the code segments responsible for modifying page table en-
tries (PTEs) should be replaced with corresponding EKC calls.
Typical cases include: (1) Page Fault Handling. In most OSes,
when a page fault occurs, a physical memory page is allocated
and mapped into the user address space. During this process,
EKC-ALLOC should be invoked to ensure that the PTE is up-
dated by EKC. (2) Device Mapping. For PTE modifications
involving MMIO or pages that are mapped to fixed addresses
(e.g., trap handlers), EKC-ALLOC should be invoked.

In OS kernels without a memory management module,
such as certain real-time OSes (e.g., FreeRTOS [17]) or OSes
designed for low-end CPUs (e.g., Linux-noMMU [3]), this
step is generally unnecessary, as memory layout is static.

User Process Management. When a user process is created
or terminated, a unique process tag (e.g., pid or tgid) is used
to manage its corresponding page tables. EKC-PTINIT should
be invoked to initialize new page tables and EKC-FORK to
duplicate an existing address space during process creation.
To support the execution of new binaries (e.g., via the exec
syscall), EKC-WRITE can be used to load binary contents into
the process’s user space memory. Finally, during context
switches, the OS kernel should propagate the process tag
to the context switch routine. EKC-ACTIVATE must then be
invoked to switch between per-process page tables.

7 Analysis and Evaluation

Deployed platforms and operating systems. As summa-
rized in Table 4, EKC has been deployed across a diverse set
of operating systems and hardware platforms. Among them,
rCore [7] and rcc [8] are open-source educational operat-
ing systems, implemented in Rust and C respectively. FreeR-
TOS is a widely used open-source real-time operating system
(RTOS) kernel. TinyLinux is a minimalist variant of the Linux
kernel, derived from version 2.6.35. All experiments were
conducted on the following platforms:

• QEMU [6], a cross-platform system emulator.
• Kendryte 210 [2], equipped with a RV64GC 400MHz pro-
cessor and 64MB SRAM.
• Allwinner D1-H board [11], equipped with a C906 RISC-V
1GHz processor and DDR3 1GB DRAM.
• Raspberry Pi 4b board [38], equipped with a Cortex-a72
AArch64 1.8GHz processor, and DDR4 1GB SDRAM.

Table 4: Deployed platforms and OSes

ISAs Platform OS kernel OS type
Arm32 Qemu 6.3.0 TinyLinux Linux-based

Arm64 Qemu 6.3.0 rCore in C Unix-like
Raspberry Pi 4b FreeRTOS Real-time

RISC-V
Qemu 6.3.0 rCore in C Unix-like
Allwinner D1H rCore in C Unix-like
Kendryte 210 rCore Unix-like

Code base. The current implementation of EKC comprises
approximately 28K lines of safe Rust, 450 lines of unsafe
Rust, and 2.2K lines of assembly code (see Table 1). The
unsafe portions, including both unsafe Rust and assembly
codes, are primarily concentrated in the port module, which
facilitates hardware and ISA support.

Integrating EKC into an operating system typically requires
minor code modifications. For instance, embedding EKC into
TinyLinux involved 16 files changed, 282 insertions and
77 deletions. A detailed explanation of how EKC is ported
to TinyLinux and how it works within the TinyLinux can be
found in Appendix C.

7.1 Security Analysis
Under our threat model (see Sec. 3.2), two key aspects are
considered in the security analysis of EKC: (1) the security
of compartmentalization (C1); (2) memory safety of EKC’s
implementation, particularly the interfaces it exposes to OS
kernel (C3). The first aspect is validated by an in-depth anal-
ysis of how invariants (see Sec. 4) address all potential vec-
tors that an adversary maybe exploit to bypass compartment
boundaries. For the second aspect, we examine relevant CWEs
and conduct code analysis to identify and mitigate security
vulnerabilities.

Enforcing Kernel Compartmentalization. We consider five
attack vectors through which the OS kernel can breach the
security of EKC:
• Access the virtual address of EKC space.
• Directly access the physical address of EKC space.
• Directly modify RPTR to change the page tables.
• Trigger interrupts to hijack the control flow of EKC.
• Exploit the vulnerabilities in the Entry Gate.

The security of EKC can be guaranteed as follows: (1)
Inv. 1-1 and Inv. 3-1 ensure that the physical address of EKC
space and its page tables are not mapped, resulting in a page
fault if OS kernel attempts to access them. (2) According to
Inv. 3-2 and Inv. 3-3, if DMA is permitted, IOMMU must be
properly configured, and any instructions that could enable
DMA access must be removed via instruction scanning. (3)
Both the instruction scanning solution and hardware-based al-
ternative (referred in Sec. 5.2) support Inv. 1-2 by preventing

USENIX Association 34th USENIX Security Symposium 7497

such attacks. (4) Inv. 2-1 ensures that the trap handler resides
in EKC thereby preventing control flow from escaping EKC
during trap handling. Inv. 2-2 guarantees that the trap handler
cannot be changed. (5) RPTR serves as an atomic lock to en-
sure that the code within the gate executes as an indivisible
unit. Adversaries cannot execute a fraction of the code or alter
the control flow after privileges have been elevated.

Beside these five attack vectors, the adversary may attempt
to indirectly breach the security of EKC via improper calls to
the interfaces. The main risks of the interface can be summa-
rized as control-flow attack and data-oriented attack. EKC en-
sures the atomicity and security of Entry/Exit Gate execution
via code analysis, thereby preventing control-flow hijacking.
To mitigate data-oriented attacks, EKC rigorously validates
all parameters provided by the OS kernel and user process,
rejecting any illegal or malformed inputs, as further detailed
in the following sections.

Analysis of Top CWEs. This section analyzes EKC’s secu-
rity by examining some representative CWEs from the Weak-
nesses in the 2023 CWE Top 25 [22]. Additionally, as outlined
in CWE Research Concepts [24], all CWEs are grouped into
ten categories, summarized in Table 5.

Rust’s secure compiler and static analysis tools address
common vulnerabilities like NULL Pointer Dereference, In-
sufficiently Random, and Integer Overflow. These are detailed
further in the analysis of code implementation. To secure in-
teractions between EKC and the OS kernel, only basic types
are used as parameters, and rigorous validation is performed
to mitigate risks such as Unrestricted File Upload, Out-of-
Bounds Access, and Improper Neutralization.

The risk of Use After Free vulnerabilities in Rust-based
EKC is minimal. Even if a UAF issue were to occur, the
adversary would still be unable to alter PTEs since page tables
are confined to the EKC space. In contrast, other free page
frames are allocated in the OS kernel space using separate
allocators, thereby preserving strict spatial separation.

In multithreaded environments, EKC avoids race condi-
tions by processing only one request at a time. In multi-
core configurations, each core operates independently without
shared memory, significantly reducing the risk of concurrency-
related issues.

EKC currently does not address the problem of Missing
Authentication for Critical Functions yet. Although the inter-
faces exposed to OS kernel are limited, there is no authentica-
tion mechanism to verify OS kernel modules. This presents a
potential risk: malicious modules, although unable to directly
compromise EKC, could exploit EKC to target other kernel
modules. Future improvements will focus on implementing
authentication mechanisms for critical interfaces to mitigate
this vulnerability.

Analysis of the Rust-Based Implementation. Assuming the
Rust core library, architecture-support libraries (e.g. cortex-
a [42]), and the Rust compiler tools are trused, the safe Rust

code can be considered secure, which is guaranteed by the
strong type safety and thread safety of Rust. The unsafe Rust
code is checked by MirChecker [32], which identifies five
types of undefined behaviors, i.e., memory safety, inline as-
sembly, divided by zero, overflow, and panic. The result is
shown in Table 6. Regarding the unresolved warnings given
by MirChecker, we have manually checked the specific code
corresponding to each warning:
• The majority of Memory Safety (M) warnings comes from

dereferencing fixed address pointers, such as dereferencing
PTEs, Trampoline and Trap Context.
• The majority of Inline Assembly (I) warnings are in-

evitable and involve simple access to CSR registers. Others
are the call to Entry/Exit gate.
• The unresolved Overflow (O) warnings primarily pertain
to bitwise overflow issues, particularly in the context of
operations involving flag bits of page table entries.
• The unresolved Panic (P) situation are checked not lead to
the exposure of sensitive data.

Regarding to assembly code, there are mainly two parts of
assembly codes: Entry/Exit Gate and Trap Gate. As a result
of the limited code size, we have meticulously reviewed every
line of assembly code, validating that their execution is both
atomic and secure. More details are described in Appendix A.

Furthermore, to analyze memory safety on the whole
project, Rudra [16] is a static analyzer to detect common
undefined behaviors. The report in Table 7 showed that EKC
had no potential risks in the three aspects it checked.

7.2 Performance Evaluation

This section analyzed the evaluation results from the unit
tests, bench tests, and system tests. The specific values for all
evaluation results are listed in the Appendix B.

Unit Test. In EKC, there are mainly 3 modules: compartment
management module, gate module, and service module. The
basic tasks of these are measured individually with the results
shown in Table 8. We tried call/return from EKC and the OS
kernel to user process with or without gates to calculate the
time usage of the raw gate. For comparison, timer interrupt
handling in FreeRTOS usually costs 50us. The latency of
the gate is within acceptable limits. We also measured the
time usage of instruction scanning for one page frame and the
time usage of hashing the memory to get the measurement
of the kernel image each executable page frame in OS kernel
would bring a 2.8ms latency, and the latency of 554ms per
page would affect kernel measurement during startup. Other
service examples are also measured in time, but their perfor-
mance is largely determined by the code implementation of
the service, making them not as valuable a reference. More
rigorous measurement methods for this can be found in sys-
tem tests for services.

7498 34th USENIX Security Symposium USENIX Association

Table 5: Representative CWEs in the 2023 CWE top 25

Categories Representative CWEs in 2023 Top 25 [22]
Improper Access Control Improper Authorization (285), Missing Authentication for

Critical Function (502)
Improper Interaction Between Multi-Correctly-Behav Entities Unrestricted Upload of File with Dangerous Type (434)
Improper Control of a Resource Through its Lifetime Use After Free (416), Out-of-bounds Read/Write (125/787)
Incorrect Calculation Integer Overflow or Wraparound (190)
Insufficient Control Flow Management Race Condition (362)
Protection Mechanism Failure Use of Insufficiently Random Values (330)
Incorrect Comparison Incorrect Regular Expression (185)
Improper Check or Handling of Exceptional Conditions NULL Pointer Dereference (476)
Improper Neutralization Improper Input Validation (20), Code Injection (94)
Improper Adherence to Coding Standards NULL Pointer Dereference (476)

Table 6: Number of LoCs and warning from MirChecker
- Number of LoCs MirChecker Warning
Module Name S1 U1 A1 M2 O2 D2 P2 I2

CM Module4 1616 26 0 1 2 0 0 0
Service Module 1208 162 2 0 4 0 0 1
Gate Module 295 31 305 2 0 0 2 2
Port Module3 1321 34 227 5 1 0 2 9
1 S=Lines of Safe Rust, O=Lines of Unsafe Rust, A=Lines of Assembly
2 M=Memory-Safety, O=Numeric-Overflow, D=Divided-by-zero,

P=Panic, I=Inline-Assembly
3 The result is the average of all the current port modules.
4 Compartment Management Module.

Table 7: Rudra’s warning on the entire project

Warning type Amount
Panic Safety 0
Higher-order Safety Invariant 0
Propagating Send/Sync in Generic Types 0

Table 8: Evaluation on basic modules in EKC
Module Basic task of module Latency
CMM1 memory hashing (4KB) 554 ms
CMM1 instruction scanning (4KB) 2.8 ms
Gate Entry/Exit Gate call 7.8 us
Gate Trap Gate call 0.14 us

Service appending log (4KB) 269 us
Service AES encrypt (4KB) 1783 us
1 CMM=Compartment Management Module

Bench Test. The RTOSBench [9] in FreeRTOS is executed
both with and without EKC on Allwinner D1-H board (as
shown in Fig. 7.a). In RTOSBench, six indicators are used
to assess RTOS performance, with each result representing
the average of multiple measurements to ensure accuracy
and reliability. Since RTOS typically operates without mem-

Figure 7: Evaluations on test bench and case studies

ory management, most of the cases has only less than 5%
overhead, while the primary overhead arises from interrupt
delegation, about 205%. These factors introduce minimal per-
formance degradation in most scenarios. However, interrupt
processing stands out as an exception, with a performance
overhead approximately three times the baseline. This delay
is likely due to the additional processing required by EKC
or similar mechanisms. Despite this, the overall impact on
performance remains manageable, suggesting that EKC can
be integrated into RTOS environments without significantly
affecting efficiency in most use cases.

USENIX Association 34th USENIX Security Symposium 7499

The UnixBench [10] in rcc is executed similarly on Rasp-
berry Pi 4b board (as shown in Fig. 7.b). In UnixBench, var-
ious user processes with tasks are assigned to the operating
system to run repeatedly, and performance is measured by
the number of tasks executed within 10 seconds. Each result
is the average of multiple measurements for consistency and
accuracy. According to the results:
• EKC introduces almost no overhead (less than 5%) for

general syscalls, but the pipe syscall experiences about 30%
overhead due to the allocation of buffers.
• EKC has no overhead about mathematical operations like
hanoi theoretically, but about 50% lags on int and double.
• The fork and exec in the looper utilize the EKC API fre-
quently, resulting in 230% overhead compared to others.

These two bench tests show that EKC has a limited perfor-
mance impact on commodity OS, with only some overhead
in page table management and interrupt handling.

System Test. To assess the practicality of EKC, we evaluate
two case studies as follows:
• We ported the WolfSSH [51] software to a modified FreeR-
TOS with EKC, storing the WolfSSH AES session keys
within EKC. The keys cannot be directly accessed by other
compartments, and encryption or decryption can only occur
through EKC. In our experiment, a SSH client would estab-
lish session to the host with EKC, and EKC would help the
host encrypt/decrypt all TCP packets.
• We record a tamper-proof log of kernel execution within

EKC and allow user processes to access the log to verify its
integrity. In out experiment, users will request EKC to read
and write log information of different lengths.
The results of these evaluations are shown in Fig. 7.c and

Fig. 7.d. In the tamper-proof log case, the overhead intro-
duced by EKC remains constantly 30us, regardless of the log
information size. In the SSH connection case, EKC functions
as a cryptographic service provider, serving as the AES back-
end for WolfSSH to encrypt and decrypt TCP packets from
a client. Despite the time required for AES encryption and
decryption, the average additional cost introduced by EKC is
around 17%, which is in acceptable limit.

These two cases demonstrate EKC ’s practicality and effi-
ciency in real-world applications, providing reliable perfor-
mance with tolerable overhead.

8 Related Works

Previous works on kernel compartmentalization can be di-
vided into three categories as follows. Some representative
works are summarized in Table 9.

Hardware-Assisted Solutions. Some existing solutions de-
pend on specific hardware features, for example, HAKCs [34]
using Arm’s PAC and MTE, SKEE [15] using Arm’s TTBCR,
KDPM [30] using Intel’s MPK. However, they only support

Table 9: Existing kernel compartmentalization mechanisms

Works Type1 Target2 Bounded Mechanism
Hilps [19] P U+K Arm’s TxSZ
HAKC [34] P K Arm’s PAC+MTE
KDPM [30] P K Intel’s MPK
SKEE [15] P K Arm’s TTBCR
xMP [39] H U+K VMM
LXDs [35] H K Sandboxing
NK [25] S K Page table
XFI [28] S K Intel’s SFI
1 P=Platform-assisted, H=Hypervisor-assisted, S=Software-based
2 K=Only targeting OS, U+K=targeting both OS and user process

limited compartmentalization due to the inherent constraints
of their respective hardware platforms. In contrast, EKC is a
native cross-platform compartmentalization mechanism as it
does not depend on platform-specific hardware.

Hypervisor-Assisted Solutions. xMP [39], VMM-based
[41, 49, 53], and sandboxing-based approaches [35, 37] de-
pend on hypervisors to enforce least-privilege separation and
enable fine-grained domain isolation. Although these meth-
ods are effective within virtual machines, these methods are
less suitable for bare-metal systems or real-time operating
systems. As a complementary solution, EKC fills this gap
by providing effective kernel compartmentalization for bare-
metal platforms.

Software-Based Solutions. Nested Kernel [25] is a kernel
compartmentalization method that requires almost no hard-
ware features on x86, instead relying on a virtualization-like
technology called Secure Virtual Architecture (SVA) [21].
However, it fails to address the trap handling or restrict ac-
cess to the control registers [13]. SFI-based solutions [28]
establish protection through static analysis and runtime code
instrumentation. However, their primary goal is to ensure the
integrity of the control flow rather than enforcing kernel com-
partment privilege separation. Inspired by the state-of-the-art
works, EKC successfully embedded into the kernel as a priv-
ileged compartment, providing secure and practical kernel
compartmentalization.

9 Conclusion

We introduced EKC, a kernel compartment designed to inte-
grate seamlessly into commodity OSes as a privileged, iso-
lated module. EKC demonstrates strong portability across
multiple ISAs and is extensible to various OS kernels. Our
Rust-based implementation of EKC successfully on both
RISC-V and Arm ISAs, and is compatible with FreeRTOS,
rCore, and TinyLinux. Comprehensive evaluations confirm
that EKC is a practical and effective solution for secure kernel
compartmentalization.

7500 34th USENIX Security Symposium USENIX Association

Ethics considerations

We have carefully reviewed the ethical guidelines in the call
for papers. We confirm that our research considers the po-
tential negative impacts, obeys with laws, and contains no
disclosures of vulnerabilities.

Open science

We confirm that this submission adheres to the Open Science
guidelines of USENIX Security ’25. All relevant artifacts
associated with this work have been publicly released on
Zenodo:

https://doi.org/10.5281/zenodo.15534623

The artifacts are organized into three separate archives, as
detailed below:

• RustEKC_src.zip: Contains the full source code of
EKC, including core modules, documentation, libraries,
and various testbenches and examples. This archive sup-
ports Sections 5, 6, and 7.

• payloads_src.zip: Includes the source code of all in-
tegrated payloads (rCore, FreeRTOS, TinyLinux), illus-
trating how each OS kernel was modified to integrate
with EKC. This archive supports Sections 6 and 7.

• RustEKC_artifacts.zip: Provides precompiled bina-
ries executable in QEMU, enabling readers to directly
evaluate EKC. This archive supports Section 7.

Additionally, the most recent source code for EKC is main-
tained in the open-source repository:

https://anonymous.4open.science/r/RustEKC-34E4

All subsequent updates and bug fixes will be released
through this repository.

Acknowledgments

We appreciate the anonymous reviewers for their constructive
suggestions. The work was in part supported by National Key
R&D Program of China under grant No. 2023YFB4503902
and National Natural Science Foundation of China under grant
No. 62361166633 and No. 62472281.

References

[1] Intel® 64 and IA-32 Architectures Software Devel-
oper Manuals. https://www.intel.com/content/
www/us/en/developer/articles/technical/
intel-sdm.html.

[2] Kendryte K210. https://www.canaan-creative.
com/product/kendryteai.

[3] Linux. https://github.com/torvalds/linux.

[4] Memory Tagging Extension. https://developer.
arm.com/documentation/108035/latest/
Introduction-to-the-Memory-Tagging-Extension.

[5] Pointer Authentication Code. https://developer.
arm.com/documentation/109576/latest/
Pointer-Authentication-Code/.

[6] QEMU. https://www.qemu.org/.

[7] rCore. https://github.com/rcore-os/rCore.

[8] rCore in C. https://github.com/shili2017/rcc.

[9] RTOSBench. https://github.com/gchamp20/
RTOSBench.

[10] UnixBench. https://github.com/kdlucas/
byte-unixbench.

[11] Allwinner DE2.0. Referenced Sep 2024.
https://linux-sunxi.org/images/7/7b/
Allwinner_DE2.0_Spec_V1.0.pdf.

[12] Adil Ahmad, Sangho Lee, and Marcus Peinado. Hardlog:
Practical tamper-proof system auditing using a novel au-
dit device. In IEEE Symposium on Security and Privacy,
pages 1791–1807, 2022.

[13] Adil Ahmad, Botong Ou, Congyu Liu, Xiaokuan Zhang,
and Pedro Fonseca. Veil: A Protected Services Frame-
work for Confidential Virtual Machines. In Proceedings
of the 28th ACM International Conference on Architec-
tural Support for Programming Languages and Operat-
ing Systems, page 378–393, 2024.

[14] Hesham Almatary, Michael Dodson, Jessica Clarke, Pe-
ter Rugg, Ivan Gomes, Michal Podhradsky, Peter G Neu-
mann, Simon W Moore, and Robert NM Watson. Com-
partOS: CHERI compartmentalization for embedded
systems. arXiv preprint arXiv:2206.02852, 2022.

[15] Ahmed M Azab, Kirk Swidowski, Rohan Bhutkar, Jia
Ma, Wenbo Shen, Ruowen Wang, and Peng Ning. SKEE:
A lightweight Secure Kernel-level Execution Environ-
ment for ARM. In 23rd Annual Network and Distributed
System Security Symposium, pages 21–24, 2016.

[16] Yechan Bae, Youngsuk Kim, Ammar Askar, Jungwon
Lim, and Taesoo Kim. Rudra: Finding memory safety
bugs in rust at the ecosystem scale. In Proceedings of the
ACM SIGOPS 28th Symposium on Operating Systems
Principles, page 84–99, 2021.

USENIX Association 34th USENIX Security Symposium 7501

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.canaan-creative.com/product/kendryteai
https://www.canaan-creative.com/product/kendryteai
https://github.com/torvalds/linux
https://developer.arm.com/documentation/108035/latest/Introduction-to-the-Memory-Tagging-Extension
https://developer.arm.com/documentation/108035/latest/Introduction-to-the-Memory-Tagging-Extension
https://developer.arm.com/documentation/108035/latest/Introduction-to-the-Memory-Tagging-Extension
https://developer.arm.com/documentation/109576/latest/Pointer-Authentication-Code/
https://developer.arm.com/documentation/109576/latest/Pointer-Authentication-Code/
https://developer.arm.com/documentation/109576/latest/Pointer-Authentication-Code/
https://www.qemu.org/
https://github.com/rcore-os/rCore
https://github.com/shili2017/rcc
https://github.com/gchamp20/RTOSBench
https://github.com/gchamp20/RTOSBench
https://github.com/kdlucas/byte-unixbench
https://github.com/kdlucas/byte-unixbench
https://linux-sunxi.org/images/7/7b/Allwinner_DE2.0_Spec_V1.0.pdf
https://linux-sunxi.org/images/7/7b/Allwinner_DE2.0_Spec_V1.0.pdf

[17] Richard Barry et al. FreeRTOS. Internet, page 18, 2008.

[18] Alessandro Bertani, Danilo Caraccio, Stefano Zanero,
Mario Polino, et al. Confidential Computing: A Security
Overview and Future Research Directions. In Proceed-
ings of the 8th Italian Conference on Cyber Security,
pages N–A, 2024.

[19] Yeongpil Cho, Donghyun Kwon, Hayoon Yi, and Yunhe-
ung Paek. Dynamic Virtual Address Range Adjustment
for Intra-Level Privilege Separation on ARM. In 24th
Annual Network and Distributed System Security Sym-
posium, 2017.

[20] Jolyon Clulow. On the security of PKCS# 11. In In-
ternational Workshop on Cryptographic Hardware and
Embedded Systems, pages 411–425, 2003.

[21] John Criswell, Andrew Lenharth, Dinakar Dhurjati, and
Vikram Adve. Secure virtual architecture: A safe execu-
tion environment for commodity operating systems. In
Proceedings of twenty-first ACM SIGOPS Symposium
on Operating Systems Principles, pages 351–366, 2007.

[22] CWE. Cwe view: Weaknesses in the 2023 cwe top 25
most dangerous software weaknesses. 2023. https:
//cwe.mitre.org/data/definitions/1425.html.

[23] CWE. Cwe-416: User after free. Refer-
enced Mar 2024. https://cwe.mitre.org/data/
definitions/416.html.

[24] CWE. Cwe view: Research concepts. Refer-
enced Mar 2024. https://cwe.mitre.org/data/
definitions/1000.html.

[25] Nathan Dautenhahn, Theodoros Kasampalis, Will Di-
etz, John Criswell, and Vikram Adve. Nested kernel:
An operating system architecture for intra-kernel privi-
lege separation. In Proceedings of the Twentieth Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages
191–206, 2015.

[26] Trung T Dinh-Trong and James M Bieman. The
FreeBSD project: A replication case study of open
source development. IEEE Transactions on Software
Engineering, pages 481–494, 2005.

[27] Rens Dofferhoff, Michael Göebel, Kristian Rietveld, and
Erik van der Kouwe. iScanU: A portable scanner for
undocumented instructions on risc processors. In 2020
50th Annual IEEE/IFIP International Conference on De-
pendable Systems and Networks, pages 306–317, 2020.

[28] Ulfar Erlingsson, Martín Abadi, Michael Vrable, Mihai
Budiu, and George C Necula. XFI: Software guards for

system address spaces. In Proceedings of the 7th sympo-
sium on Operating systems design and implementation,
pages 75–88, 2006.

[29] Samuel Greengard. Will RISC-V Revolutionize Com-
puting? Commun. ACM, page 30–32, 2020.

[30] Hiroki Kuzuno and Toshihiro Yamauchi. KDPM: Kernel
Data Protection Mechanism Using a Memory Protection
Key. In International Workshop on Security, pages 66–
84, 2022.

[31] Hugo Lefeuvre, Nathan Dautenhahn, David Chisnall,
and Pierre Olivier. SoK: Software Compartmentaliza-
tion. In IEEE Symposium on Security and Privacy, pages
75–75, 2024.

[32] Zhuohua Li, Jincheng Wang, Mingshen Sun, and
John CS Lui. Mirchecker: detecting bugs in rust pro-
grams via static analysis. In Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 2183–2196, 2021.

[33] Nicholas D Matsakis and Felix S Klock. The rust lan-
guage. ACM SIGAda Ada Letters, pages 103–104, 2014.

[34] Derrick Paul McKee, Yianni Giannaris, Carolina Ortega,
Howard E Shrobe, Mathias Payer, Hamed Okhravi, and
Nathan Burow. Preventing Kernel Hacks with HAKCs.
In 29th Annual Network and Distributed System Security
Symposium, pages 1–17, 2022.

[35] Vikram Narayanan, Abhiram Balasubramanian, Charlie
Jacobsen, Sarah Spall, Scott Bauer, Michael Quigley,
Aftab Hussain, Abdullah Younis, Junjie Shen, Moinak
Bhattacharyya, et al. LXDs: Towards isolation of ker-
nel subsystems. In 2019 USENIX Annual Technical
Conference, pages 269–284, 2019.

[36] Vikram Narayanan, Yongzhe Huang, Gang Tan, Trent
Jaeger, and Anton Burtsev. Lightweight kernel isolation
with virtualization and VM functions. In Proceedings of
the 16th ACM SIGPLAN/SIGOPS International Confer-
ence on Virtual Execution Environments, pages 157–171,
2020.

[37] Bryan D Payne, Martim Carbone, Monirul Sharif, and
Wenke Lee. Lares: An architecture for secure active
monitoring using virtualization. In IEEE Symposium on
Security and Privacy, pages 233–247, 2008.

[38] Raspberry pi Foundation. Raspberry pi
4 model b specifications, Referenced Dec
2024. https://raspberrypi.com/products/
raspberry-pi-4-model-b/specifications/.

[39] Sergej Proskurin, Marius Momeu, Seyedhamed Ghavam-
nia, Vasileios P Kemerlis, and Michalis Polychronakis.

7502 34th USENIX Security Symposium USENIX Association

https://cwe.mitre.org/data/definitions/1425.html
https://cwe.mitre.org/data/definitions/1425.html
https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/1000.html
https://cwe.mitre.org/data/definitions/1000.html
https://raspberrypi.com/products/raspberry-pi-4-model-b/specifications/
https://raspberrypi.com/products/raspberry-pi-4-model-b/specifications/

xmp: Selective memory protection for kernel and user
space. In IEEE Symposium on Security and Privacy,
pages 563–577, 2020.

[40] Niels Provos, Markus Friedl, and Peter Honeyman. Pre-
venting privilege escalation. In 12th USENIX Security
Symposium, 2003.

[41] Junghwan Rhee, Ryan Riley, Dongyan Xu, and Xuxian
Jiang. Defeating dynamic data kernel rootkit attacks
via vmm-based guest-transparent monitoring. In 2009
International Conference on Availability, Reliability and
Security, pages 74–81, 2009.

[42] Andre Richter. cortex-a crates.io. 2018. https://
crates.io/crates/cortex-a/7.3.0.

[43] Mendel Rosenblum and Tal Garfinkel. Virtual machine
monitors: Current technology and future trends. Com-
puter, pages 39–47, 2005.

[44] J.H. Saltzer and M.D. Schroeder. The protection of
information in computer systems. Proceedings of the
IEEE, pages 1278–1308, 1975.

[45] David Seal. ARM architecture reference manual. 2001.

[46] Daniel Tabak. RISC systems. 1990.

[47] tinyclub. tinylinux based on linux 2.6.35. 2011. https:
//github.com/tinyclub/tinylinux/.

[48] Dalton Cézane Gomes Valadares, Newton Carlos Will,
Marco Aurélio Spohn, Danilo Freire de Souza Santos,
Angelo Perkusich, and Kyller Costa Gorgônio. Confi-
dential computing in cloud/fog-based Internet of Things
scenarios. Internet of Things, page 100543, 2022.

[49] Carl A. Waldspurger. Memory resource management
in VMware ESX server. In USENIX Symposium on
Operating System Design and Implementation, pages
181–194, 2002.

[50] Andrew Waterman, Yunsup Lee, Rimas Avizienis,
David A Patterson, and Krste Asanovic. The RISC-V
instruction set manual volume II: Privileged architecture
version 1.7. 2015.

[51] wolfSSL Inc. Wolfssh, Referenced Aug 2024. https:
//www.wolfssl.com/products/wolfssh.

[52] Nicolas Wu. Dirty pagetable: A novel ex-
ploitation technique to rule linux kernel. 2023.
https://yanglingxi1993.github.io/dirty_
pagetable/dirty_pagetable.html.

[53] Xi Xiong and Peng Liu. SILVER: Fine-grained and
transparent protection domain primitives in commodity
OS kernel. In 16th Research in Attacks, Intrusions, and
Defenses, pages 103–122, 2013.

[54] Min Xu, Xuxian Jiang, Ravi Sandhu, and Xinwen Zhang.
Towards a VMM-based usage control framework for
OS kernel integrity protection. In Proceedings of the
12th ACM symposium on Access control models and
technologies, pages 71–80, 2007.

[55] Qiu Yi, Xiong Puxiang, and Tianlong Zhu. The Design
and Implementation of the RT-thread Operating System.
2020.

Appendix A Unresolved MirChecker warning
Regarding the unresolved warnings given by MirChecker, we
have confirmed the specific code implementation correspond-
ing to each warning is secure.

Inline-Assembly Warning.

asm!("sfence.vma")
...
asm!("jr %0", in(OS_ENTRY_ADDRESS));

Some simple assembly code as above. They typically perform
a single operation at a specific location, such as flushing the
TLB, jumping to a constant address, etc. We can simply view
these operations as risk-free. Because we know exactly what
it is doing and what the expected outcome is.

Overflow Warning.

pub fn token(&self) -> usize {
// calculate the value of satp register.
return 8usize << 60 | self.root_ppn.0;

}

These warnings come from bit operations and are mainly
about flag-bit operations as above. Here 8usize « 60 is only a
flag-bit of satp register.

Panic Warning.

...
// some assemblyinstruction that would jump

to another place
asm!(....);
// cause panic, but not reachable
panic!("not reachable.")

In fact, most of them are impossible to happen due to inline
assembly code before. If, in very exceptional circumstances,
there really is an illegal state execution, currently we choose
to simply panic the kernel rather than try to deal with it.

Appendix B The detailed result of evaluation
In the benchmark test, the results are recorded directly. In
our own test case, the CPU clock is used to evaluate the time
usage. Each case is tested multiple times (>3), and the average
value is recorded. The data presented in Sec. 7 may have been
processed, but all are referenced from here.

USENIX Association 34th USENIX Security Symposium 7503

https://crates.io/crates/cortex-a/7.3.0
https://crates.io/crates/cortex-a/7.3.0
https://github.com/tinyclub/tinylinux/
https://github.com/tinyclub/tinylinux/
https://www.wolfssl.com/products/wolfssh
https://www.wolfssl.com/products/wolfssh
https://yanglingxi1993.github.io/dirty_pagetable/dirty_pagetable.html
https://yanglingxi1993.github.io/dirty_pagetable/dirty_pagetable.html

The Raw Gate. We invoke EKC API and trap with and with-
out the gate for 100K times to compute the cost, the average
result are shown in 10.

UnixBench on rcc. The UnixBench would keep executing
a program in 10 seconds, and record how many times it exe-
cuted. The average value were recorded in 13.

RTOSBench on FreeRTOS. The RTOSBench already mea-
sured each cases multiple times and provide an average time
usage as a report. The report were recorded in Table 12.

WolfSSH. The average time usage of sending packet is
recorded in Table 13. The value in bracket is the time us-
age of AES encryption. Since the AES library in Rust has
different performance with the one in C, the difference be-
tween the total packet sending time and the AES encryption
time is used in the paper.

Tamper Proof Log. In log recording and reading, the main
time is spent reading and writing memory, so rust memcpy
is used as a reference to observe the performance of EKC as
shown in Table 14.

Kernel Measurement and Instruction Scanning. This two
basic functions are specifically evaluated, and the average
value were recorded in Table 15.

Table 10: Performance of the raw gate

Time Cost EKC API
(x100K)

Trap(x100K)

with Gate 1390 ms 37 ms
without Gate 610 ms 23 ms

Table 11: UnixBench result on rcc

Testcase
rcc with EKC
(times/10s)

rcc
(counts/10s)

syscall 28231 27157
pipe 10249 13812
int 52016 76145

long 51723 76809
double 51632 76356
float 51735 75993
hanoi 4295 4409
looper 36 155

Table 12: RTOSBench result on FreeRTOS

Testcase
FreeRTOS+EKC

(µs)
FreeRTOS

(µs)
Context switch 53 51

INTR processing 1987352 649536
MQ1send 126 143

MQ1receive 37 36
MQ1signal 93 97

MQ1workload 337 295
Mutex release 134 137

Mutex aquisition 105 101
Mutex workload 167 165

Jitter 221378 218520
Semaphore wait 49 48

Semaphore signal 129 121
Sema. workload 327 322

1 MQ=Message Queue

Table 13: WolfSSH evaluation

Testcase
wolfSSH+EKC

(µs)
wolfSSH

(µs)
establish session 15056 13732
send packet 1KB 1733(6021) 616(1.8)
send packet 4KB 3209(1783) 609(6.8)
send packet 8KB 4931(3629) 1862(13.2)
send packet 16KB 13003(7235) 6870(26.9)
send packet 32KB 25942(14397) 13797(52.2)
send packet 64KB 49914(28711) 26117(103.6)
1 All the value in bracket is the time usage of AES library in rust/ C.

Table 14: Tamper proof log evaluation
packet

size
append log

(µs)
retrieve log

(µs)
memcpy

(µs)
20B 52 57 22

200B 58 60 29
600B 81 81 52
1KB 104 112 78
2KB 161 162 130
4KB 269 275 243
6KB 378 383 348
8KB 486 491 461

Table 15: Evaluation on hashing and instruction scanning

test case time usage (ms)
OS kernel image hashing (256KB) 35472
OS kernel image hashing (1MB) 133050
OS kernel image hashing (4MB) 584768

instruction scanning (4KB) 2.8

7504 34th USENIX Security Symposium USENIX Association

Appendix C How EKC works in Arm32
TinyLinux
TinyLinux [47] is a light-weighted Linux kernel forked from
Linux-2.6.35. Currently, 16 files changed, 282 insertions and
77 deletions have been made to embed EKC into TinyLinux.

Boot Process Modification

In the original Linux boot process (shown in Fig. 8.1a-1d),
the boot loader load kernel zImage into LOAD ADDRESS and
jump to it. Then, the decompressor would be decompress the
linux kernel to ENTRY ADDRESS and execute the linux kernel.
The linux kernel would build an early page table and enable
MMU to execute itself in virtual address, and then setup the
linux kernel. After embedding EKC, the bootloader will
load EKC into the original LOAD ADDRESS to initialize EKC
first (Fig. 8.2a). The LOAD ADDRESS and ENTRY ADDRESS are
move to an higher address, to reserve a section of memory
for EKC. After EKC initialization, the MMU is enabled, and
EKC would jump to OS’s new LOAD ADDRESS(Fig. 8.2b).

EKC does not know the structure of zImage, so it only the
first page in kernel ENTRY ADDRESS, where locates the Entry
Code (added in head.S of Decompressor) in zImage. The
Entry Code calls the EKC-ALLOC to initialize more acces-
sible memory. Then, the Entry Code make the area where
the Decompressor is located executable (Fig. 8.2c), and calls
the decompressor. After the Decompressor decompresses the
kernel data to the entry address (Fig. 8.2d), the decompressor
uses the EKC-ALLOC to make the kernel executable (simul-
taneously make it not writable) and then jumps to the kernel
entry address (Fig. 8.2e).

Early Init Modification

When the Linux kernel is initialized, its executable memory
are already been scanned, therefore no instructions that can
modify RPTR and IVTR are available in Linux. Although not
shown in detail in the figure, after the Linux kernel is executed,
it only needs to keep the .text segment as executable, and set
other segment to the appropriate read and write permissions
using the EKC API.

In the early boot, Linux initialized several memory-related
structures and used bootmem to manage memory. In order to
prevent Linux from trying to access the EKC space (which
would otherwise cause panic), it is necessary to reduce the
available physical memory area read from the device tree in
the early boot and remove the EKC space from it.

Linux mainly used the create_mapping function to cre-
ate large-scale mappings. While retaining all the logic for
updating the memory description structure, it replaced the
statements that wrote to the page table with calls to the EKC
API. Linux cannot write to the stvec register, so it uses the
EKC-CONFIG to set the trap delegation address to its own
trap handler. Since EKC saves the context before delegating

the interrupt, the Linux interrupt handler needs to be modified
slightly to adapt to the interrupt processing from EKC.

Kernel Shared Memory

In Linux and most Unix-like systems, user-level page tables
usually share mappings for kernel space and device MMIO
addresses. EKC continues this design principle. In the early
system boot phase, the OS kernel can specify the memory area
that needs to be shared through the EKCAPI-CONFIG interface.
When EKC creates page tables for user processes, this shared
area will be automatically included in the page table mapping
without explicit specification by user space.

Memory Management Modification

In Linux, the memory management module of the Linux ker-
nel (specifically, the buddy allocator) is tightly coupled with
other modules, especially the file system. However, the actual
part that allocate pages is the page fault handler. Therefore, in
order to minimize unknown impacts, EKC only need to affect
the behavior of page fault handler, as shown in Fig. 9. Of
course, in order to reduce the number of page fault interrupts
and recycle useless memory in a timely manner, we still need
to update the page table in some specific places:
• When calling any function relevant to directly mapping,
like remap_vmalloc_range and remap_pfn_range, call
the EKC-ALLOC to directly map a range of MMIO address
to specific virtual address.
• When calling any function relevant to deallocation, like
do_munmap, call EKC-DEALLOC.

Process Management Modification

Only when the user process switches/creates/destroys, Linux
needs to call the EKC API to synchronously switch/create/de-
stroy the page table.

In copy_process() in do_fork(), the pid and tgid
of the new process would be initialized. If new tgid are
assigned, a new page table should also be initialized by
EKCAPI-INIT with page table number tgid. In Linux man-
agement, there is a complete memory description structure
(mm_struct) for this new process, so the page fault interrupt
can manage all page allocation of the new process, although
this will be a bit slow. If you need to improve performance,
use EKCAPI-FORK to reduce the triggering of page faults and
the number of page frame copies.

In __switch_to() in context_switch(), the user con-
text are switched by updating RPTR. After embedding EKC,
the current tgid should be given to this function, and
__switch_to() would call EKCAPI-ACTIVATE with the pro-
vided tgid.

In release_task() in do_exit(), EKCAPI-DESTROY
would be called to release all the allocated page tables.

USENIX Association 34th USENIX Security Symposium 7505

Figure 8: (1a-1d) The original Linux Kernel (2a-2e) The Linux Kernel embedded with EKC

Figure 9: How EKC affect Linux’s memory management Figure 10: How EKC affect Linux’s process management

7506 34th USENIX Security Symposium USENIX Association

	Introduction
	Background and Concepts
	Overview
	Motivation
	Threat Model and Privilege Model
	Challenges
	Applications

	Security Invariants for EKC
	Design
	Creating EKC Compartment
	Assigning/Restricting Privilege
	Calling/Returning from EKC
	Runtime Compartments Management

	Implementation
	Compartment Management Module
	Gate Module
	Port Module
	Guidelines for Embedding EKC

	Analysis and Evaluation
	Security Analysis
	Performance Evaluation

	Related Works
	Conclusion

