
SoK: Opportunities for Accelerating Multi-Party
Computation via Trusted Hardware

Tong Liu1, Zhen Huang2, Jiaao Li3, Jianyu Niu1, Guoxing Chen2, Yinqian Zhang1
1Southern University of Science and Technology 2Shanghai Jiao Tong University 3Tsinghua University

1{12332466@mail.sustech.edu.cn, niujy@sustech.edu.cn, yinqianz@acm.org}
2{xmhuangzhen, guoxingchen}@sjtu.edu.cn 3lja23@mails.tsinghua.edu.cn

Abstract—Multi-Party Computation (MPC) allows a set of
parties to evaluate a joint function without revealing their private
inputs to each other. However, existing MPC protocols suffer from
high computation and communication complexity, making them
incapable of practical privacy-preserving applications. Unlike
MPC, which relies on expensive cryptography, Trusted Execution
Environments (TEEs) aim to efficiently protect the integrity and
confidentiality of run-time code and data from the hardware
level. Despite this, TEE is not a panacea due to its vulnerability
to various attacks to deteriorate their confidentiality. Therefore,
integrating MPC protocols with TEE emerges as a promising
approach to achieving both high performance and security. In
this paper, we surveyed existing works of integrating TEE into
MPC to build a privacy-preserving framework with optimized
communication and computing overhead. These integrated MPC-
TEE protocols vary from different trust assumptions of TEEs’
confidentiality, by which they can be categorized into four classes:
TEE with complete confidentiality, TEE with access pattern
leakage, TEE with no confidentiality or integrity, and hybrid
models of the above three cases. By analyzing these works, we
summarized the focal points of integrating two approaches under
different trust levels and provided paradigm cases for each level.
We also figured out several challenges in integrating TEE and
MPC protocols and suggested several future research directions
that are worthy of further study.

I. INTRODUCTION

Nowadays, the data volume involved in analyses and com-
putations has grown exponentially due to the pursuit of more
accurate and effective training and inference in Machine
Learning (ML) [1]. This forces individual organizations with
limited data to turn to a collaborative computing approach to
jointly utilize their data. The traditional collaborative method
requires a single party to collect all participants’ data and
then compute, which may lead to the leakage of valuable or
sensitive data.

Multi-Party Computation (MPC) is a family of protocols
that allow a group of mutually distrusted parties to compute
a joint function on their input data without knowing the
input data of each other. MPC has recently experienced
rapid development, numerous optimized general-purpose MPC
protocols have been proposed [2]–[5], and a continuous surge
of customized protocols for ML [6]–[9], has emerged. MPC

Tong Liu, Jianyu Niu, and Yinqian Zhang are affiliated with the Re-
search Institute of Trustworthy Autonomous Systems and the Department of
Computer Science and Engineering of Southern University of Science and
Technology (SUSTech).

protocols are composed of several cryptographic techniques
including Secret Sharing [10], Garbled Circuits [11], Oblivious
Transfer [12], etc. Informally speaking, to protect sensitive
data from unauthorized access, these cryptographic algorithms
encrypt private data, which complicates the computational
procedures and potentially necessitates additional rounds of
communication. Although the performance of MPC protocols
has been significantly improved over the past decade [13]–
[15], MPC still suffers from high computation and communi-
cation complexity, making them incapable of either general-
purpose applications or AI-specific applications.

To alleviate the high computational costs, TEE [16]–[18]
offers an alternative way for conducting private computations
among multiple data sources at the hardware level. TEE
provides run-time isolation to protect the confidentiality and
integrity of the code and data used by programs running within
the TEE. This substantially reduces complexity during the
computation process compared with MPC. Programs running
inside a TEE can serve as a trusted party, providing secure
computing services. While TEE is instrumental, it is not a
panacea. It remains vulnerable to attacks that can compromise
either its confidentiality or integrity guarantees. For example,
one well-known issue is the access pattern leakage, which
significantly impacts the confidentiality of TEE.

With MPC and TEE having their respective pros and cons,
a natural question is raised: how to combine MPC with
TEE, attaining the best of these two worlds, to realize both
efficient and secure privacy-preserving computation? Driven
by this question, many researchers leverage TEE’s integrity
and confidentiality on program executions to construct more
practical and general MPC protocols [19], [20]. Generally,
TEE aims to ensure the integrity of the running program
as well as the confidentiality of corresponding data. The
deployment of TEE can replace or simplify cryptographic
algorithms in MPC to achieve the same level of security,
accelerating the performance of MPC protocols. Furthermore,
utilizing some of the functionalities in MPC protocols that are
responsible for confidentiality can in turn counteract potential
access pattern leakage when deploying TEE.

In this paper, we survey existing works of integrating
TEE with MPC protocols to build more efficient privacy-
preserving computation frameworks. Through an investigation
into diverse studies with varying security assumptions, we



have categorized several situations that can notably accelerate
MPC protocols. These scenarios generally presuppose basic
integrity in TEE and propose designs tailored to different
confidentiality assumptions. Furthermore, some works blend
different security assumption schemes based on the degree of
data confidentiality requirements.

Based on this point, the studies we surveyed are classified
into four categories according to the trust level in TEE’s
confidentiality, they are: 1) trust TEE with complete confi-
dentiality or integrity, 2) consider TEE with access pattern
leakage, 3) assume TEE has no confidentiality and 4) hybrid
model. Depending on the trust level, the focus of these
works varies. For the first category, TEE is assumed to offer
complete confidentiality, it then can be treated as a Trusted
Third Party (TTP). The encrypted data can be decrypted and
processed directly within TEE and then transmitted the result
to all participating parties. When access pattern leakage is
considered, MPC protocols need to focus on the design of
access logic to conceal the traces of program executions within
TEE and mitigate the impact of side-channel attacks. Even
when treating TEE as an entity with no confidentiality or even
no integrity, MPC protocols can still entrust some calculations
involving trivial data to TEE for some effective preprocessing,
or employ TEE to validate messages and results to enhance
the threat model that can be handled by MPC protocol. The
hybrid model could be the combination of the above conditions
according to the specific requirements.

Integrating these two techniques can effectively reduce the
substantial expenses related to MPC protocols, bringing them
within practical reach. This allows for the implementation of
data-intensive computations, e.g. ML, within a reasonable time
cost. It also enhances some semi-honest protocols [6], [21]–
[24] to be able to counter malicious attacks with significantly
reduced costs, which was exceptionally challenging.

We focus on these four categories, summarizing the sce-
narios and the foremost issues that should be settled under
each level based on the research we investigated. Our attention
will be on the functionality of TEE in the framework and
the enhancements it brings to MPC protocols. Based on
the introduced works, we also analyze the shortcomings of
existing methods and the challenges faced in further improving
performance. We then extend research directions worth explor-
ing in the future, considering these limitations and challenges.

Contributions. Our main contributions are as follows:

• We categorize existing works into four types by their
distinct trust models: TEE with full confidentiality, TEE
with access pattern leakage, TEE without confidentiality
or integrity, and hybrid model.

• We conduct a comprehensive analysis of these works,
including the resistible threat model, protocol purpose,
enhancement on MPC, and the functionality of TEE, then
summarize the general implementation paradigm and asso-
ciated considerations.

• We summarize the existing shortcomings of existing works
and analyze the challenges of addressing these shortcom-

ings, providing a prospective view of potential directions
for improvement in the future.

Roadmap. Sec. II briefly outlines the fundamental aspects of
MPC and TEE, and Sec. III provides classification criteria for
the current work. Sec. IV elaborates on the technical details of
the related works, and Sec. V identifies the difficulties in the
integration. Potential areas for further research are provided in
Sec. VI. Finally, the paper is concluded in Sec. VII.

II. BACKGROUND

In this section, we will introduce the background of this pa-
per, which contains preliminaries of Multi-Party Computation
(MPC) and Trusted Execution Environment (TEE).

A. Multi-Party Computation

MPC presents a secure computation approach to jointly
computing a function f(x1, · · · , xn) among a set of n
parties, denoted as ⟨P1, · · · , Pn⟩, using their private inputs
⟨x1, · · · , xn⟩. Each party will eventually get the output of the
function and learn nothing more than it.

Threat Model. For MPC protocols, there are usually two
threat models: semi-honest adversary and malicious adversary.

• Semi-honest Adversary. Semi-honest adversaries are as-
sumed to follow the protocol honestly but still be curious
about others’ private information.

• Malicious Adversary. Malicious adversaries may not fol-
low the protocol faithfully and might deviate from their
behaviors to gain more information.

Security Properties. MPC protocols usually aim to achieve
the following three security properties.

• Privacy. No party should learn anything more than the
protocol’s officially revealed data.

• Correctness. Honest parties ultimately receive correct out-
puts from the function.

• Availability. Corrupted parties should not be able to prevent
honest parties from receiving their output.

Here, publicly available information about other parties’
input refers to the final output of the function and any pre-
agreed portions. All information beyond this scope, including
individual parties’ inputs and any intermediate data not con-
sented to be shared, must be kept private. Malicious parties
should be unable to gain any useful information by any means.
Each honest party is guaranteed that the output that it receives
is correct. More concisely, the output of the MPC protocol
with input x and function f should be identical to f(x). In
other words, the adversary should not be able to disrupt the
computation by carrying out a disruptive behavior.

MPC Primitives. MPC typically comprises a set of cryp-
tographic techniques, including but not limited to secret
sharing [10], Oblivious Transfer (OT) [12], Garbled Circuit
(GC) [11], and Beaver Triples [25].

1) Secret Sharing. In secret sharing [10], secret data are
divided into multiple shares and then distributed to different



participants for computation. The complete secret can only
be reconstructed when a subset has more than the threshold
number of members.

2) Oblivious Transfer. In Oblivious Transfer (OT) [12], the
sender obliviously transfers certain private information to the
receiver. The receiver gets nothing more than the transferred
data, while the sender cannot learn which data is trans-
ferred. Specifically, the sender holds N indexed information
(M1,M2, ...,MN ), and a receiver chooses the information
indexed by k (1 ≤ k ≤ N ) while not leaking k to the sender.
This is also referred to as 1-out-of-N OT.

3) Garbled Circuit. Garbled Circuit (GC) [11] is one of the
most popular approach [3] [4] [2] in MPC. GC supports two
parties P1 and P2 jointly compute the function f(x, y) without
the trusted third party, where P1 holds x ∈ X , and P2 holds
y ∈ Y .

4) Beaver Triples. Beaver Triples [25] use triplet a, b, c to
help compute x ∗ y within the framework of secret sharing,
without revealing complete x and y. The triplet a, b, c satisfies
ab = c. Participants obtain ai, bi, ci respectively, then compute
ei = xi − ai, fi = yi − bi, and reconstruct e, f . This yields
xy = ef + af + be+ c.

MPC Overhead. The cryptographic techniques encompassed
within MPC serve to safeguard the privacy of secret inputs
during computations, albeit at the expense of increased com-
putation and communication overhead. In some application
scenarios, such elevated costs are often deemed impractical.

B. Trusted Execution Environment

TEE Platforms. Trusted Execution Environment (TEE) is a
secure region designed to provide confidentiality and integrity
for code and data within it. TEE is generally implemented
on a CPU, shielding regions from potentially malicious privi-
leged software, such as operating systems. Representative TEE
platforms include Intel SGX [17], AMD SEV [16], and ARM
TrustZone [18] [26].

Intel SGX is a representative process-level TEE. It divides
applications into trusted and untrusted parts. The trusted parts
are running on isolated memory, called enclaves. Enclave in-
terfaces enable communication between external applications
and enclaved functions. SGX also offers data sealing to encrypt
and export secret data from enclaves, using encryption policies
for access control.

On the other hand, AMD SEV is a popular approach to
VM-level TEE. AMD SEV uses the encrypted virtual machine
(VM) to protect applications while trusting the OS kernel. The
AMD-SP manages the Virtual Encryption Key (VEK) for each
VM, while the MEE encrypts and decrypts memory pages
using the VEK.

Security Issues. Studies indicate that TEE is vulnerable can
be categorized into physical attacks and software attacks.

1) Physical Attacks. The adversary tries to control or destroy
the physical entities of the target such that the target system
fails to provide service or the malicious user processes can

TABLE I
COMPARISON BETWEEN MPC AND TEE

Technique Rigorous
Security Proof Performance Scalability Flexibility

MPC ✔ Low Low Low

TEE ✘ High High High

have unrestricted access to the target system. The simplest
model of physical attack is the Denial of Service (DoS) model,
which disconnects the target system’s network or the power
supply. There are several common physical attacks such as
port attacks [27], bus tapping attacks [28], chip attacks [28],
and power analysis [29].

2) Software Attacks. Software attacks refer to using the mali-
cious system or software inside it to drive the target system to
an abnormal state. There exist many kinds of software attack
techniques such as peripherals attacks [30], Rowhammer at-
tacks [31], and cache timer attacks [32]. In peripheral attacks,
adversaries can use malicious system software to compro-
mise the target system and then perform unauthorized DMA.
Rowhammer attack frequently refreshes the content of DRAM,
causing bit flips in the memory cells that are responsible
for managing memory translation or making secure decisions.
Cache timer attacks can be mounted only on the user programs
running at the lowest priority. The adversary will launch a
user process to access the specific memory address, fill up the
cache, then learn the deduce sensitive information.

C. Comparing MPC protocols and TEE

In this section, we provide a high-level comparison between
MPC and TEE in terms of rigorous security proof, perfor-
mance, scalability, and flexibility, shown in Table I.

Rigorous Security Proof. The MPC protocol is composed of
cryptographic algorithms, and compared to TEE, it has more
rigorous security proofs. As a result, it can offer better security
and confidentiality than TEE. However, the implementation
of cryptographic algorithms also comes with higher computa-
tional and communication overheads.

Performance. TEE, on the other hand, achieves a secure
computational environment through hardware support. It no
longer relies on high-overhead cryptographic algorithms for
encryption, leading to highly efficient computations.

Scalability. MPC protocols can typically support few partici-
pants and can be challenging to scale for numerous participants
due to the complexity of cryptographic protocols and the need
for multiple rounds of communications. Since computations
can be isolated within individual TEE, it is easier for TEE to
scale up for applications involved with many parties.

Flexibility. Though MPC protocols are versatile and can
handle a wide range of computations, the designs of MPC
protocols depend on the specific applications or computations
they are intended for. Conversely, TEE is tailored for running



programs within isolation, offering a high level of control and
customization for developers, which gives higher flexibility.

Summary. MPC offers more stringent security proofs to
ensure the confidentiality of sensitive data, while TEE takes
advantage of performance, scalability, and flexibility. Thus,
combining these two approaches can build a more advanced
framework, holding the potential to retain both the strong
confidentiality of MPC and the efficiency of TEE simulta-
neously. This integration empowers the framework to handle
more complex MPC scenarios without compromising security.

III. TAXONOMY AND CRITERIA

In this paper, we survey existing works that integrate
TEE and MPC protocols for reducing cryptography overhead.
Specifically, according to different trusted assumptions of
TEE’s confidentiality, we categorize them into four types: trust
TEE with complete confidentiality, consider TEE has access
pattern leakage, TEE without confidentiality, and hybrid model
which combines the situations above.

• TEE with Complete Confidentiality. If all participants
assume TEE offers complete confidentiality, TEE can be
viewed as a Trusted Third Party (TTP) since it can provide
both integrity and confidentiality. In this setting, the main
issues include building a secure channel for communica-
tions between TEE and parties and providing robust attes-
tation mechanisms, etc. Usually, this architecture achieves
the best performance.

• TEE with Access Pattern Leakage. To mitigate or elimi-
nate attacks that analyze runtime information and access
patterns, MPC protocols deployed in TEEs can reduce
the need for cryptographic primitives designed to protect
confidentiality. This enables them to focus specifically on
addressing access pattern leakage of TEEs, particularly in
mitigating side-channel attacks. It achieves an adequate
level of confidentiality with minimal overhead, leading us
to consider this as an independent category.

• TEE with No Confidentiality. When TEE is considered as
an entity without confidentiality, sensitive computation can
no longer be entrusted to TEE. However, some preprocess
calculations involved with trivial input data can still be
employed in TEE. Alternatively, TEE’s integrity keeps the
program inside TEE to be uncontrollable by a malicious
party, which also enables TEE to role as an attestation
service. This configuration may not significantly enhance
performance, but it can still optimize communication com-
plexity and strengthen the protocol’s threat models.

• Hybrid Model. Compared to considering TEE as a none
confidentiality party and implementing MPC protocol in a
pure cryptographic way, a hybrid model of cryptography
and TEE can greatly improve performance. The data can
be divided into several parts according to the degree of se-
crecy. According to various requirements, we can combine
multiple models offering different levels of confidentiality
to achieve the highest efficiency while meeting security
needs. This method employs a variable threshold, allowing

the expected trade-off between confidentiality and perfor-
mance to be achieved in practice.

Our criteria primarily focus on the threat models that can
be defended by these proposed frameworks, the use cases’
purposes of MPC protocols within the framework, the func-
tionality of TEE, and whether the deployment of TEE has
improved the MPC protocols’ performance or enhanced the
threat models that the MPC protocols can handle. Since the
enhancement of the threat model in traditional MPC protocols
requires extremely high overhead, we consider this promotion
as part of the acceleration of the MPC protocols.

IV. USE CASE ANALYSIS

This section analyzes recent works using TEE-based MPC
schemes, as documented in Table II. These schemes are cate-
gorized into four types according to the trust levels of TEEs.
Specifically, we first provided an overview of the current
application scenarios within each category and summarized
the issues that require attention. Following this, using their
research as an example, we explored specific technical details,
elaborating on how the problem set is instantiated in practice.
We focused on discussing the problems addressed by these
technologies, along with which part of the computation is
optimized. Additionally, we explored how this design enhances
the performance and threat model level of MPC protocols
through the use of TEE.

A. Trust TEE with Complete Confidentiality

Problem Statement. By fully entrusting a TEE with confi-
dentiality and integrity, it can effectively function as a trusted
third party (TTP). With a secure communication channel, MPC
can be implemented by simply gathering parties’ inputs into
TEE, performing the pre-agreed functions, and then returning
the output to those participants. Employing this architectural
approach can enable MPC schemes to support a larger number
of participants with minimal performance degradation. These
approaches [33] [21] [22] facilitate accelerated processing, as
no communication is required for the function execution inside
the TEE and all computations within the TEE operate on the
declassified plaintext.

Case Analysis. Küçük et al. [33] present how trusted hard-
ware, like Intel SGX, can establish a trustworthy remote entity
(TRE) suitable for many-party applications in the malicious
threat model. In this approach, TEE is assumed to possess
complete confidentiality and integrity. External entities cannot
observe or interfere with the internal program execution.
TEE is only vulnerable to physical attacks. The essential
prerequisites within this framework are secure communication
channels and a root trust attestation service authenticated
by all participants. These elements enable the TEE to work
as a TTP to privately facilitate the necessary computations
among multiple parties, without cryptographic mechanisms
and multiple rounds of communications.

They focus on privacy-preserving energy metering and
compare the performance of an SGX-based TRE to a Trusted



TABLE II
USE CASES COMPARISON. THE NOTATIONS GP, FAAS, ML, AND PMT ARE SHORT FOR GENERATE PURPOSE, FUNCTION-AS-A-SERVICE, MACHINE

LEARNING, AND PRIVATE MEMBERSHIP TEST, RESPECTIVELY.

Framework Trust Model Threat Model Purpose
Enhancement on MPC

Functionality of TEE
Threat Model Performance

Küçük et al. [33]

TEE with Complete
Confidentiality

Malicious GP ✔ ✔ TTP for execution

Bahmani et al. [21] Malicious GP ✔ ✔
TTP for execution

and attestation

Alder et al. [22] Malicious FaaS ✔ ✔ TTP for execution

Ohrimenko et al. [34]

TEE with Access
Pattern Leakage

Semi-honest ML ✘ ✔
Provide execution
on oblivious I/O

Shaon et al. [35] Semi-honest ML ✘ ✔
Provide execution on

vectorized data

Felsen et al. [36] Semi-honest GP ✘ ✔
Provide execution on

Universal Circuit

Tamrakar et al. [37] Semi-honest PMT ✘ ✔
Provide execution
with fixed pattern

Riazi et al. [38]

TEE with No
Confidentiality

or Integrity

Semi-honest ML ✘ ✔
STP for offline

phase preprocess

Lu et al. [39] Semi-honest
and Malicious GP ✘ ✔

STP for offline
phase preprocess

Kumar et al. [6] Malicious ML ✔ ✘
Provide message

attestation

Jie et al. [40] Malicious ML ✔ ✔
Provide execution
on encrypted data

Wu et al. [23]

Hybrid Model

Malicious GP ✔ ✔
Provide execution

based on trust level

Choi et al. [41] Semi-honest GP ✘ ✔ STP for partial execution

Gupta et al. [24] Semi-honest
and Malicious GP ✔ ✔ STP for partial execution

Platform Module (TPM) based system. The results demon-
strate that SGX-TRE offers comparable performance, requir-
ing fewer lines of code and providing memory protection.
Further improvements in the SGX remote attestation protocol
can enhance the SGX-TRE’s potential, and future work in-
volves optimizing its design and exploring multiple enclaves
and enclave structures for the TRE.

Bahmani et al. [21] explore the use of Intel SGX for
general MPC. SGX’s Isolated Execution Environments (IEE)
provide secure and trustworthy execution environments, pro-
tecting against malicious parties and ensuring code and I/O
integrity. This framework regards programs and code running

within SGX as a TTP. Bahmani et al. also formally define
a new concept, Labeled Attested Computation (LAC), which
enhances security attestation for communication by attaching
specific labels to inputs and outputs. The paper then provides
detailed insights into constructions of MPC computations
functionalities based on this LAC model. Their design involves
loading the functionality into a TEE, generating keys for attes-
tation, and labeling frameworks for verifying the information
transmitted. This approach offers the capabilities to construct
more efficient and scalable MPC protocols for applications in
cloud computing, with minimal overhead on participants.

Alder et al. [22] present S-FaaS, the first implementation of



Fig. 1. S-FaaS Framework Workflow. The figure shows the workflow of the
Secure FaaS framework [22], where the service provider was deployed in TEE,
providing private function executions for clients and resource measurement
service for function providers.

Function-as-a-Service (FaaS) with strong security and account-
ability guarantees backed by Intel SGX. As shown in Figure 1,
this framework is composed of function providers, clients, and
service providers. The service provider will first ask function
providers to deploy functions on the service end and ensure
privacy for both the function and clients’ inputs/outputs by
SGX. Additionally, SGX guarantees the integrity of function
execution and performs correct computations. Consequently,
clients and function providers can participate as distinct parties
in collaborative privacy-preserving MPC, in which SGX serves
as the TTP, eliminating the originally high expenses. The
design introduces a new key distribution enclave and a novel
transitive attestation protocol to match the dynamic event-
driven nature of FaaS. S-FaaS includes resource measurement
mechanisms to securely measure compute time and memory
allocations. The results show that the resource measurement
mechanisms have excellent performance and S-FaaS can also
integrate with smart contracts for decentralized payment.

All the aforementioned works operate within the threat
model of malicious adversaries. They employ the TEE nearly
identically, treating it as a trusted third party. This facilitates
the acceleration of MPC protocols by enabling specific private
function calculations.

B. TEE with Access Pattern Leakage

Problem Statement. Though TEE functions as a secure
and isolated region, it does not protect against side-channel
attacks. A malicious host can exploit the correlation between
the access pattern and the function’s input by analyzing the
access statistics, subsequently gaining extracted information
or even private data embedded within the access patterns.
In such scenarios, the MPC protocols are not required to
offer comprehensive confidentiality. Instead, it can be designed
specifically to address access pattern leakage, mitigating the
need for majorities of cryptographic algorithms composed in
MPC protocols that contribute to high overheads. The follow-
ing works are analyzed in this category. [34] [35] [36] [37]

Case Analysis. Ohrimenko et al. [34] present a practical
system for privacy-preserving multi-party machine learning
by proposing data-oblivious machine learning algorithms. The
computations in TEE are assured to be confidential even
with only processor chips is impenetrable. This framework

is constructed by designed oblivious primitives, customized
to specific operations. These oblivious primitives reform the
algorithms’ access pattern to make the interaction trace in-
distinguishable from that produced by an algorithm simulator
that executes identical operations on the public parameters.
Algorithms written with oblivious primitives ensure the access
pattern of TEE with arbitrary input to be indistinguishable
from the host outside TEE and show strong and provable guar-
antees that the adversary could learn nothing about sensitive
data by analyzing statistics of access patterns. Relying on a
library of general-purpose oblivious primitives, the framework
mitigates side-channel attacks. Hence, some functions of MPC
protocols can be delegated to TEE utilizing these primitives,
while other resource-intensive primitives within the MPC
protocol are eliminated.

Shaon et al. [35] propose a generic data analytics frame-
work that leverages TEE in the multi-party cloud computing
environment. The framework presents a high-level Python-
inspired language that handles data in a vectorized way to hide
the detailed information access during the computation. This
language allows efficient, generic, and oblivious execution of
data analytics tasks. Moreover, they introduce BigMatrix, an
abstraction for handling large matrix operations in a data-
oblivious manner that supports vectorization. With BigMatrix,
managers can handle encrypted matrix data storage transpar-
ently, clients are allowed to access data in a block-by-block
manner with integrity and privacy protection, such a vectorized
computation automatically hides important sensitive informa-
tion. By integrating these two techniques, this framework
achieves comprehensive oblivious data access to counteract
access pattern leakage. Similarly, vectorized patterns offer nu-
merous optimizations over traditional MPC. More importantly,
due to native support for vector and matrix operations, they
are particularly favorable for convolution computations in ML
making it serves as an ideal paradigm for deploying TEE with
side-channel risks into MPC for the ML area.

Felsen et al. [36] present a secure and private function
evaluation framework with SGX. Secure function evaluation
(SFE) functioned as an MPC protocol, while Private Function
Evaluation (PFE) considers the evaluating function as the
private input of one of the participants. The approach to
weaken the side-channel attacks in this framework is to use
the boolean circuit for the function evaluation. In a boolean
circuit, all possible paths of the function are executed, and
memory accesses are independent of the inputs of any gate,
the adversary can hardly figure out the inputs of an exact gate
by gathering information while paging. Besides, Felsen et al.
indicate that since the evaluation of the boolean gate takes
constant-time cost, the timing attack does not work as well.
Thus, this architect can efficiently defend the side-channel
attack without causing cryptographic overheads, this protocol
is also suitable for PFE. However, when the evaluating func-
tion f is complicated, the cost of sending f in an encoded
way could increase by several orders of magnitude. Therefore,
they leverage a Universal Circuit (UC) to simulate a boolean
function. In this paradigm, only the function-type input should



Fig. 2. Cloud-based Private Membership Test (PMT). The cloud-based
PMT [37] provides a lookup service with a dictionary within a client
application, user can perform a PMT by querying the trusted application
deployed in the TEE of the server.

be transmitted, which then can be simplified to 4 programming
bits. This framework applies to most general computations and
can significantly reduce the majority of encryption overhead
and communication overhead.

Tamrakar et al. [37] present a scalable Private Membership
Test (PMT) framework using trusted hardware TEE shown
in Figure 2. This framework highlights the drawbacks of
the prevalent PMT algorithm Private Set Intersection (PSI),
such as high overhead and low scalability. Tamrakar et al.
then propose a paradigm entrusting the execution of the PMT
algorithm to a TEE. While the emphasis of the framework
is not primarily on addressing side-channel attacks, it does
provide insights into this aspect of the threat model. The
framework employs conventional techniques to mitigate such
attacks by cutting off dependencies between input and access
patterns, including establishing fixed access patterns, per-
forming constant-time processing, ensuring that every query
remains exactly one full carousel cycle, and the utilization of
Oblivious RAM [42]. However, these methods can lead to the
wastage of resources. For instance: when the input is small,
the same I/O process and runtime costs are incurred, which is
not flexible and can impact efficiency.

C. TEE without Confidentiality

Problem Statement. Due to the presence of side-channel
attacks, private data inside TEE still can be potentially ob-
served by the adversary host. Although we have discussed
how to mitigate or eliminate the damage caused by side-
channel attacks by modifying the architecture of the MPC,
the accompanying withdrawal is that architectural design needs
more complicated requirements for assuring confidentiality in
TEE. However, even assuming TEE provides no guarantee of
confidentiality, it can still take over certain functions to achieve
optimization such as reducing communication costs and com-
putational overhead or enhancing security functionality. We
mainly outline the following works. [38] [39] [6] [40]

Case Analysis. The framework Chameleon [38], proposed
by Riazi et al. adopt the TEE-accelerated MPC model.
Chameleon is the first research suggesting utilizing TEE
as a Semi-honest Third Party (STP) to optimize MPC In

Chameleon. In the setting of STP, TEE is not required to
provide confidentiality. The STP only participates in the of-
fline phase, generating correlated randomness for subsequent
online stages. This reduces the interaction rounds in the MPC
protocol. Since the STP is not involved in the online phase, it
has no access to either parties’ private inputs or the executed
program. Moreover, Chameleon optimizes the Du-Atallah [43]
protocol based on STP. Leveraging the integrity of trusted
hardware, the STP optimally designs the utilization of secret
sharing to perform better vector dot products. This design
further improves the efficiency of matrix multiplication, which
subsequently enhances the computational performance of this
framework.

Similar to Chameleon, Lu et al. [39] introduce the semi-
trusted hardware model to illustrate that potentially malicious
hardware can still be used to accelerate MPC executions.
Lu et al. formally define the security models for TEE in
scenarios without confidentiality and even without integrity
in this semi-trusted hardware model. In the setting of semi-
trusted hardware model, trusted hardware functionality could
be corrupted by the adversary, who can obtain any inputs from
parties or even arbitrarily modify the function’s execution in
TEE. This paper mainly introduced the design of Random OT
(ROT) and Garbled Circuits (GC) in a semi-trusted hardware
model. For random OT generation, with TEE deployed on
the receiver, the sender only needs to send a random seed,
ROT copies then can be computed locally in polynomial
time. The process of GC is quite similar to ROT, TEE is
deployed on the GC’s evaluator to generate the GC tables
and locally return the results. Therefore, the communication
overhead is reduced to linearly related to the input size and
is independent of the circuit size. Lu et al. further utilize this
concept in [44], addressing some associated drawbacks and
progress more enhancing performance.

Kumar et al. [6] present Cryptflow with a component named
Aramis that can elevate the semi-honest MPC protocol to one
that can securely withstand malicious adversaries. Different
from the designs above, TEE is no longer used to simply
accelerate MPC protocols but rather to efficiently enhance
the threat model that the protocol can handle, where such
enhancements were deemed to incur substantial costs. TEE
with its integrity, can verify computation results or transmitted
messages, addressing the challenging problem present in MPC
protocols. Aramis does not require confidentiality, secure
verification on communication messages is guaranteed by the
integrity of TEE, boosting the semi-honest MPC protocol to
securely defend against malicious adversaries. In this module,
signing keys and verification keys are generated for each
TEE instance, every message sent between parties within
a semi-honest protocol needs to be calculated by the TEE
attestation function with the key pair. Therefore, TEE is used
to validate these messages, also ensuring the correctness of the
information transmitted between parties. This approach allows
the protocol to effectively counter malicious adversaries, en-
hancing the security assumption of MPC.

Jie et al. [40] introduce a Graph Neural Network (GNN)



training and inference framework designed to facilitate the
outsourcing of users’ data to servers for computational pur-
poses. Their approach considers a scenario where the servers
are potentially malicious, capable of employing side-channel
attacks when utilizing SGX enclaves, attempting to infer user
data during model training, and even purposely deviating
from the protocol then generating poison results. To address
these security concerns, the authors develop a framework that
leverages SGX to ensure code integrity through the attestation
feature present in TEE. They also adopt a 2-out-of-2 secret
sharing scheme to divide the data and distribute them to
different servers, to safeguard data privacy. Hence, TEE’s con-
fidentiality is guaranteed through secret sharing, eliminating
the need to consider side-channel attacks. The correctness of
the MPC protocol deployed within TEE is ensured by TEE’s
integrity. Consequently, this model allows the system to handle
malicious scenarios only relying on secret sharing, providing
both security and high performance.

D. Hybrid Trust Model

Problem Statement. Based on the discussions in the previous
three subsections, we have defined trust models for three
levels of trust. Moreover, some works consider the trust of the
TEE to encompass two or all three levels of trust. Functions
often consist of multiple parts, each with varying privacy
requirements for inputs. Thus, breaking functions into pieces
and deploying integrating methods at different trust levels
based on demands can provide a targeted approach to address
the main issues under this requirement. This allows each part
of the function to achieve an optimal solution locally. In this
subsection, we present the scenario of hybrid levels of trust
and introduce these representative works. [23] [41] [24]

Case Analysis. Wu et al. [23] explore the hybrid trust model
in a specific SQL scenario when different parties have different
trust levels in TEE. They propose a generic framework called
HYBRTC to realize hybrid trust MPC. HYBRTC considers
three levels of trust among different parties: complete trust,
partial trust, and distrust. They first introduce a new notion
of multifaceted trust hardware as a formalization of TEE-
like hardware and provide rigorous security analysis in the
Universal Composability(UC) model. Then the framework is
instantiated in a scenario of a privacy-preserving distributed
query on multiple databases by presenting some typical secure
SQL operations.

HYBRTC is a framework of hybrid trust computing which
is composed of a client C and multiple TEE-enabled servers
S as shown in Figure 3. C may have complete trust or
partial trust on a server Si, whereas Si distrust each other.
HYBRTC mainly has three steps with two functions f and g
and parameters between C and S. Specifically, if C completely
trusts Si, parameters will be encrypted by an agreed session
key between C and Si. If C partially trusts Si, the function f
will be split into two parts and be processed locally in C and
Si respectively. Then a 2PC will be conducted to get the final
result of f . The function g should be performed as the standard

Fig. 3. Hybrid Trust Computing Framework [23]. The framework is composed
of a group of TEE servers with no mutual trust. Clients can entrust their
functions to different TEE servers depending on their trust level to this server.

cryptographic MPC protocols and generate partial output Oi,
which can then be reconstructed to output.

Choi et al. [41] present a balanced approach to two-
party secure function evaluation (2P-SFE) on SGX-enabled
processors. They design a protocol that partitions the function
f into pieces and allows the protocol designer to choose which
components are evaluated within the enclave and which ones
utilize cryptographic techniques. This facilitates participants
to separate functions based on data sensitivity. The portions
requiring strong security assurance are computed using the
origin steps of MPC, while the remaining parts are delegated
to TEE. This architecture presents a promising trial on the
pursuit of the trade-off between security and performance.
Choi et al. formalize the notion of 2P-SFE for this setting and
proved that their protocol meets this requirement. This design
offers excellent insights for resolving hybrid trust models and
provides effective methods for function partitioning. It grants
developers exceptional flexibility and programmability.

Gupta et al. [24] conduct an implementation of the two-
party secure function evaluation (2P-SFE) on SGX-enabled
devices, thereby enhancing its practicality for various appli-
cations. This design introduces the SGX-supported 2P-SFE
protocol, tailored to enable SFE to withstand side-channel
attacks specific to SGX. Subsequently, it focuses on the hybrid
utilization of the original 2P-SFE protocol and SGX-supported
2P-SFE. Gupta et al. establish a choice of the protocol used,
by partitioning the secrecy levels among parties’ inputs. They
provided a detailed workflow for the data structures in 2P-SFE,
e.g. in the form of GC, encrypted data are interconverted with
the structures that are capable of SGX-supported 2P-SFE in
different trust levels, achieving the desired hybrid model effect.
They developed two protocols for secure computation in the
semi-honest model specifically tailored for this platform for
simplicity. However, Gupta argued that the enhancement of
the threat model for this protocol can be much easier than
traditional MPC protocols. Simply running the function N
times can ensure the computation is not interfered, where N
refers to the threshold of malicious nodes.



V. CHALLENGES OF USE CASES

Based on the use cases outlined in Section IV, we have
identified several challenges in the design of TEE-based MPC
schemes. These challenges encompass security assumptions
and centralized root of trust in TEE, as well as the detection
and revocation of compromised TEE.

A. Security Assumptions of TEE Implementations

One challenge of using TEE for MPC is to figure out
how secure the existing TEE implementations are or make
a practical assumption on TEE. As discussed in II-B, current
TEE implementations face varieties of software and physical
attacks [45]–[47]. Implementations of TEE are constantly
evolving as more attacks are discovered. As Intel makes it
clear that SGX does not defend against side-channel attacks,
a series of side-channel attacks based on cache access patterns
have been proposed. In the context of using TEE for MPC, re-
searchers assume TEE security under the condition that access-
pattern leakage can be addressed, and they propose data-
oblivious or constant-time algorithms [22], [34], [35], [37].
This assumption can be broken by recently disclosed power
consumption-based side-channel attacks against constant-time
algorithms [48]. Consequently, researchers are exploring new
TEE-based MPC designs that do not assume the confidentiality
of TEE states [6], [38], [39].

While the aforementioned side-channel attacks target spe-
cific secrets within the enclave, speculative execution attacks
enable the adversary to extract arbitrary secrets inside the
enclave, even the remote attestation key. With the leaked
remote attestation key, adversaries can impersonate any en-
clave and deceive the client, thereby undermining the integrity
guarantee provided by TEE. The severity of such attacks,
which completely compromise TEE’s security guarantees,
leads researchers to assume that hardware patches released by
vendors can address these issues. Disregarding these threats
as out of scope when developing TEE-based MPC schemes
would question the practicality of the designed schemes.
Therefore, recent works have acknowledged this concern and
proposed hybrid trust models in which some TEE platforms
could potentially be entirely compromised [23], [24], [41].

B. Centralized Root of Trust

After making proper assumptions about the security of
TEE implementations, another challenge is to deal with the
centralized root of trust design. TEE usually relies on remote
attestation to establish trust with the client as described in
II-B. The roots of trust in existing remote attestation schemes
are usually root secrets within the processors. These secrets
are usually embedded into the processors during manufac-
ture. The manufacturer holds copies of these secrets or the
corresponding certificates of these secrets, which are needed
when verifying remote attestation requests. The manufacturer
might choose to run its remote attestation service such as
Intel Attestation Service [49], provide certificates to third
parties (such as data centers) to set up third-party attestation
services (e.g. Intel DCAP), or release certificates to the public

to allow enclave users to attest enclaves by themselves. All
these settings require enclave users to trust the manufacturer to
manage the root secrets properly. However, such a centralized
root of trust design might incur risks of a single point of
failure. Such concern could even be exacerbated when the
manufacturer might be compelled to disclose the secrets.

The centralized root of trust might also restrict the scala-
bility of the MPC designs. Specifically, while platforms pos-
sessed by different entities could be viewed as different parties
in MPC, whether enclaves running on different platforms can
be considered as different parties are debatable since these
enclaves might be endorsed by the same manufacturer, e.g.
when SGX enclaves running on different platforms are using
the same Intel Attestation Service to attest themselves to other
parties. On the other side, involving more manufacturers would
need to deal with the trustworthiness of different manufactur-
ers which depends on various factors such as the reputation,
the scale, or even the registration place. Raising the bar of
trusted manufacturers would lead to a limited number of TEE
participants (e.g. , Intel and AMD), while a lower bar requires
to consider potentially compromised TEE implementations.

C. Detection and Revocation of Compromised TEE

Due to various attacks on TEE, some TEE implementations
or platforms could be compromised, despite what security
assumptions are made during design. Hence, it is critical to
(1) timely detect and (2) properly revoke compromised TEE.

Detecting compromised TEE could be quite challenging.
For example, a TEE platform is considered compromised when
its root secret (used as the root of trust) is leaked. An adversary
who obtains the root secret has no incentive to disclose this
compromise. Instead, it would prefer to conceal it and run
arbitrary code that could bypass remote attestation with the
leaked root secret.

Some existing remote attestation schemes, such as Intel
Enhanced Privacy ID (EPID) [49], do provide mechanisms
to verify whether an attestation report is from a compromised
TEE, but they require the compromised TEE to be disclosed
to the attestation service, and it is not clear which party is
authorized to disclose compromised TEE. If an adversary
gains the authentication to disclose TEE, it can report to
the attestation service that some honest TEE platforms as
compromised ones to exclude them from participating in the
MPC protocols.

VI. OPPORTUNITIES AND FUTURE WORK

In this section, we discussed the promising research di-
rections of combining TEE and MPC protocols, which are
discovered and summarized from the cases mentioned above.
Specifically, these cases show a growing trend of using TEE
in MPC either to promote the system performance [39] or
to improve the security level [6]. The challenges, security
assumptions as well as limitations in these studies bring new
insights into the future directions of TEE-aided MPC designs
and implementations.



A. New Security Primitives

One security primitive for TEE that should be enhanced is
to guarantee the state continuity property. The state continuity
mandates that when a protected module resumes execution
from an interruption (e.g., reboots, power outages, or system
crashes), it should resume the same state before the interrup-
tion [50]. Rollback attacks pose a serious threat to the integrity
and security of applications running within the TEE that can
replay old transactions or cryptographic operations, leading to
financial losses, data breaches, or unauthorized access [51]–
[56]. Also, when TEE is recovering from faults, the state
storage service can propose a rollback attack by transmitting
the outdated state of the entity, which subsequently impacts
state continuity. State continuity violation has severe conse-
quences in many applications, such as payments [57], trusted
storage [58], smart contract [59], as well as authentication rate
limiting [60], [61]. In many applications, such as auctions and
payment systems, the system has to guarantee state continuity.

Since TEE can crash due to physical attacks such as
powering off the machine, it is imperative to design a more
sophisticated recovery mechanism to achieve efficient recovery
of the previous state from a TEE crash, along with preventing
state rollback results from delayed state recording. There have
been numerous studies [52] [53] [55] [62] [63] addressing
rollback attacks and preserving state continuity for trusted
hardware when fault recovery occurs. Nevertheless, within the
framework of combining TEE and MPC, it has the potential
to construct a more secure rollback-resistant state recovery by
utilizing the design of the MPC protocols.

B. Standard Security Assumption

There are various security assumptions including treating
TEE as a trusted third party, considering TEE with access
pattern leakage, and TEE without confidentiality or integrity.
As we can see, each system designer has its security as-
sumption of TEE, and there is no agreement on the security
models in the community. There are two main reasons for
the divergence. First, system designers have different views
of the root trust. In particular, they have different confidence
in no backdoor, steganography, and kleptography from the
manufacturers and centralized attestation mechanism for code
integrity. Second, system designers think differently about at-
tacks such as side-channel attacks. New attacks or defenses are
proposed continuously, which determines the confidentiality
guarantee of TEE. Thus, up to now, there hasn’t been a unified
security assumption, leading to a bewildering array of security
assumptions in various research studies.

The divergence in trust models leads to various designs.
While this can promote new studies, it also distracts re-
searchers’ efforts. One future work is to propose a standard
security model. As this integration framework becomes more
mature, there is a need for a unified and practical security
standard and evaluation system to simulate real-world use
cases, for a more precise assessment of the framework’s
performance, security, flexibility, etc. We argue that it is hard

to use one security assumption for all MPC scenarios, by prac-
tical scenarios and awareness of multiple attacks, establishing
a widely recognized evaluation criteria or exemplary choice
will be a crucial direction for standardizing the entire research
framework in the future.

C. Decentralized TEE Identity Management and Attestation

As discussed in Sec. V-B, one of the weaknesses is the
centralized root of trust design in TEE. Due to the trust
requirements associated with this centralized attestation ser-
vice, the system will lack fault tolerance and robustness.
To address this, distributed solutions are typically adopted.
Subsequently, one promising research direction for enhancing
this MPC-TEE framework is to provide decentralized TEE
identity management and attestation against a single point of
failure. Additionally, the decentralized attestation model can
address the issues when participants lack trust in the trust root,
providing stronger security assumptions for the management
and attestation of TEE entities. Moreover, due to the increasing
number of TEE providers, future architectures need to consider
that each participant may not acquire TEE from the same
provider, i.e., , heterogeneous TEE. The authentication of
heterogeneous TEE is challenging and cannot rely on a single
root-of-trust mechanism. This urgency drives the need for
a distributed service that supports the management and au-
thentication of heterogeneous TEE nodes. For example, ARM
research’s Veracruz project [64] aims to support cloud-based
IoT applications with heterogeneous TEE. The project, under
the Confidential Computing Consortium [65], demonstrates
some of the hurdles that one has to overcome to support an
infrastructure of heterogeneous TEE, which is an excellent
paradigm for this area.

D. Other Privacy-Enhancing Technologies

There are potentially analogous TEE-based methodologies
that can enhance the efficiency and security of Privacy-
enhancing technologies (PETs) – Homomorphic Encryption
(HE), Zero-Knowledge Proofs (ZKPs), and Functional En-
cryption (FE). Currently, some works leverage TEE to assist
PETs like ZKPs [66], [67], HE [68], and FE [69]. These TEE-
based approaches offer promising avenues for optimizing the
performance and security of these cryptographic techniques.
By leveraging the capabilities of TEE, it becomes possible to
mitigate certain computational and security challenges associ-
ated with HE, ZKPs, and FE.

E. End-Game Scenario

Due to its design with strict confidentiality and integrity,
MPC incurs unavoidable computational and communication
costs. With the continuous development, if TEE can obtain
stronger guarantees of confidentiality and integrity, it may
completely replace the existence of MPC. Even if TEE cannot
immediately counter all attacks, MPC inspires privacy comput-
ing protocols tailored for TEE. Leveraging the characteristics
of TEE, privacy computing can focus only on the aspects



that TEE cannot protect, e.g. providing integrity against side-
channel attacks or offering correctness check. This will reduce
significant computational and communication costs, greatly
improving the performance achievable by privacy computing.

VII. CONCLUSION

In this paper, We conducted a comprehensive analysis of
existing works that integrate TEEs with MPC. We categorize
existing works into four types by their distinct trust models:
TEE with full confidentiality, TEE with access pattern leakage,
TEE without confidentiality or integrity, and hybrid model.
We summarize the existing shortcomings of existing works
and analyze the challenges of addressing these shortcomings,
providing a prospective view of potential directions for im-
provement in the future. We also show that there are still many
possibilities for solving existing weaknesses e.g. side-channel
attacks and applying TEE to MPC protocol to gain consid-
erable performance with drawbacks, such as hybrid model,
remote attestation, or innovation of encryption methods. These
new exploration directions may also help MPC to be applicable
in more computing fields.

ACKNOWLEDGEMENT

We would like to thank our shepherd, Gang Tan, and the
anonymous reviewers for their helpful comments and feed-
back. We also thank Hanzheng Lyu for the fruitful discussions.
This work is supported in part by the Shenzhen Science and
Technology Program under Grants RCBS20221008093248075
and JSGG20220831095603007; and in part by the NSFC
under Grant 62302204.

REFERENCES

[1] A. L’Heureux, K. Grolinger, H. F. Elyamany, and M. A. M. Capretz,
“Machine learning with big data: Challenges and approaches,” IEEE
Access, pp. 7776–7797, 2017.

[2] D. Demmler, T. Schneider, and M. Zohner, “Aby - a framework for
efficient mixed-protocol secure two-party computation,” in Network and
Distributed System Security Symposium, 2015.

[3] M. Keller, “Mp-spdz: A versatile framework for multi-party computa-
tion,” Cryptology ePrint Archive, Paper 2020/521, 2020.

[4] D. Bogdanov, S. Laur, and J. Willemson, “Sharemind: A framework for
fast privacy-preserving computations,” IACR Cryptol. ePrint Arch., p.
289, 2008.

[5] S. Zahur and D. Evans, “Obliv-c: A language for extensible data-
oblivious computation,” IACR Cryptol. ePrint Arch., p. 1153, 2015.

[6] N. Kumar, M. Rathee, N. Chandran, D. Gupta, A. Rastogi, and
R. Sharma, “Cryptflow: Secure tensorflow inference,” in IEEE Sympo-
sium on Security and Privacy. IEEE, May 2020.

[7] P. Mohassel and Y. Zhang, “Secureml: A system for scalable privacy-
preserving machine learning,” in 2017 IEEE Symposium on Security and
Privacy (SP), 2017, pp. 19–38.

[8] S. Wagh, D. Gupta, and N. Chandran, “Securenn: 3-party secure compu-
tation for neural network training,” Proceedings on Privacy Enhancing
Technologies, pp. 26–49, 2019.

[9] N. Chandran, D. Gupta, A. Rastogi, R. Sharma, and S. Tripathi, “Ezpc:
Programmable and efficient secure two-party computation for machine
learning,” in 2019 IEEE European Symposium on Security and Privacy
(EuroS&P), 2019, pp. 496–511.

[10] A. Shamir, “How to share a secret,” Commun. ACM, p. 612–613, 1979.
[11] A. C.-C. Yao, “How to generate and exchange secrets,” in 27th Annual

Symposium on Foundations of Computer Science (sfcs 1986), 1986, pp.
162–167.

[12] M. O. Rabin, “How to exchange secrets with oblivious transfer,” IACR
Cryptol. ePrint Arch., p. 187, 2005.

[13] Y. Lindell, “Secure multiparty computation,” Commun. ACM, p. 86–96,
2020.

[14] C. Zhao, S. Zhao, M. Zhao, Z. Chen, C.-Z. Gao, H. Li, and Y. an Tan,
“Secure multi-party computation: Theory, practice and applications,”
Information Sciences, pp. 357–372, 2019.

[15] D. Evans, V. Kolesnikov, and M. Rosulek, “A pragmatic introduction to
secure multi-party computation,” Foundations and Trends® in Privacy
and Security, pp. 70–246, 2018.

[16] D. Kaplan, J. Powell, and T. Woller, “AMD memory encryption,” White
paper, 2016.

[17] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue, and U. R. Savagaonkar, “Innovative instructions and
software model for isolated execution.” Hasp@ isca, 2013.

[18] T. Alves, “Trustzone: Integrated hardware and software security,” Infor-
mation Quarterly, pp. 18–24, 2004.

[19] J. I. Choi, K. R. Butler et al., “Secure multiparty computation and trusted
hardware: Examining adoption challenges and opportunities,” Security
and Communication Networks, 2019.

[20] R. Li, Q. Wang, Q. Wang, D. Galindo, and M. Ryan, “Sok: TEE-assisted
confidential smart contract,” arXiv preprint arXiv:2203.08548, 2022.

[21] R. Bahmani, M. Barbosa, F. Brasser, B. Portela, A.-R. Sadeghi, G. Scerri,
and B. Warinschi, “Secure multiparty computation from SGX,” in
Financial Cryptography and Data Security, A. Kiayias, Ed. Springer
International Publishing, 2017, pp. 477–497.

[22] F. Alder, N. Asokan, A. Kurnikov, A. Paverd, and M. Steiner, “S-faas:
Trustworthy and accountable function-as-a-service using intel SGX,” in
Proceedings of the 2019 ACM SIGSAC Conference on Cloud Comput-
ing Security Workshop, ser. CCSW’19. Association for Computing
Machinery, 2019, p. 185–199.

[23] P. Wu, J. Ning, J. Shen, H. Wang, and E.-C. Chang, “Hybrid trust multi-
party computation with trusted execution environment,” 2022.

[24] D. Gupta, B. Mood, J. Feigenbaum, K. Butler, and P. Traynor, “Using
intel software guard extensions for efficient two-party secure function
evaluation,” in Financial Cryptography and Data Security, J. Clark,
S. Meiklejohn, P. Y. Ryan, D. Wallach, M. Brenner, and K. Rohloff,
Eds. Springer Berlin Heidelberg, 2016, pp. 302–318.

[25] D. Beaver, “Efficient multiparty protocols using circuit randomization,”
in Advances in Cryptology - CRYPTO ’91, 11th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 11-15,
1991, Proceedings, ser. Lecture Notes in Computer Science, J. Feigen-
baum, Ed. Springer, 1991, pp. 420–432.

[26] B. Ngabonziza, D. Martin, A. Bailey, H. Cho, and S. Martin, “Trustzone
explained: Architectural features and use cases,” in 2016 IEEE 2nd
International Conference on Collaboration and Internet Computing
(CIC). IEEE, 2016, pp. 445–451.

[27] C. Senarak, “Port cyberattacks from 2011 to 2023: a literature review
and discussion of selected cases,” Maritime Economics & Logistics, pp.
1–26, 2023.

[28] D. Lee, D. Jung, I. T. Fang, C.-C. Tsai, and R. A. Popa, “An {Off-Chip}
attack on hardware enclaves via the memory bus,” in 29th USENIX
Security Symposium (USENIX Security 20), 2020.

[29] A. Moghimi, G. Irazoqui, and T. Eisenbarth, “Cachezoom: How SGX
amplifies the power of cache attacks,” in Cryptographic Hardware and
Embedded Systems - CHES 2017 - 19th International Conference, Taipei,
Taiwan, September 25-28, 2017, Proceedings, ser. Lecture Notes in
Computer Science, W. Fischer and N. Homma, Eds. Springer, 2017,
pp. 69–90.

[30] M. Lentz, R. Sen, P. Druschel, and B. Bhattacharjee, “Secloak: ARM
trustzone-based mobile peripheral control,” in Proceedings of the 16th
Annual International Conference on Mobile Systems, Applications, and
Services, MobiSys 2018, Munich, Germany, June 10-15, 2018, J. Ott,
F. Dressler, S. Saroiu, and P. Dutta, Eds. ACM, 2018, pp. 1–13.

[31] Y. Jang, J. Lee, S. Lee, and T. Kim, “SGX-bomb: Locking down the pro-
cessor via rowhammer attack,” in Proceedings of the 2nd Workshop on
System Software for Trusted Execution, SysTEX@SOSP 2017, Shanghai,
China, October 28, 2017. ACM, 2017, pp. 5:1–5:6.

[32] J. Götzfried, M. Eckert, S. Schinzel, and T. Müller, “Cache attacks on
intel SGX,” in Proceedings of the 10th European Workshop on Systems
Security, EUROSEC 2017, Belgrade, Serbia, April 23, 2017, C. Giuffrida
and A. Stavrou, Eds. ACM, 2017, pp. 2:1–2:6.

[33] K. A. Küçük, A. Paverd, A. Martin, N. Asokan, A. Simpson, and
R. Ankele, “Exploring the use of intel SGX for secure many-party
applications,” ser. SysTEX ’16. Association for Computing Machinery,
2016.



[34] O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta, S. Nowozin,
K. Vaswani, and M. Costa, “Oblivious Multi-Party machine learning
on trusted processors,” in 25th USENIX Security Symposium (USENIX
Security 16). USENIX Association, 2016, pp. 619–636.

[35] F. Shaon, M. Kantarcioglu, Z. Lin, and L. Khan, “SGX-bigmatrix: A
practical encrypted data analytic framework with trusted processors,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’17. Association for Computing
Machinery, 2017, p. 1211–1228.

[36] S. Felsen, A. Kiss, T. Schneider, and C. Weinert, “Secure and private
function evaluation with intel SGX,” 11 2019, pp. 165–181.

[37] S. Tamrakar, J. Liu, A. Paverd, J.-E. Ekberg, B. Pinkas, and N. Asokan,
“The circle game: Scalable private membership test using trusted hard-
ware,” in Proceedings of the 2017 ACM on Asia Conference on Com-
puter and Communications Security, ser. ASIA CCS ’17. Association
for Computing Machinery, 2017, p. 31–44.

[38] M. S. Riazi, C. Weinert, O. Tkachenko, E. M. Songhori, T. Schnei-
der, and F. Koushanfar, “Chameleon: A hybrid secure computation
framework for machine learning applications,” in Proceedings of the
2018 on Asia Conference on Computer and Communications Security,
ser. ASIACCS ’18. Association for Computing Machinery, 2018, p.
707–721.

[39] Y. Lu, B. Zhang, H.-S. Zhou, W. Liu, L. Zhang, and K. Ren, “Cor-
related randomness teleportation via semi-trusted hardware—enabling
silent multi-party computation,” in European Symposium on Research
in Computer Security. Springer, 2021, pp. 699–720.

[40] Y. Jie, Y. Ren, Q. Wang, Y. Xie, C. Zhang, L. Wei, and J. Liu, “Multi-
party secure computation with intel SGX for graph neural networks,” in
IEEE International Conference on Communications, ICC 2022, Seoul,
Korea, May 16-20, 2022. IEEE, 2022, pp. 528–533.

[41] J. I. Choi, D. J. Tian, G. Hernandez, C. Patton, B. Mood, T. Shrimpton,
K. R. B. Butler, and P. Traynor, “A hybrid approach to secure function
evaluation using SGX,” in Proceedings of the 2019 ACM Asia Confer-
ence on Computer and Communications Security, ser. Asia CCS ’19,
2019, p. 100–113.

[42] B. Pinkas and T. Reinman, “Oblivious ram revisited,” in Advances in
Cryptology–CRYPTO 2010: 30th Annual Cryptology Conference, Santa
Barbara, CA, USA, August 15-19, 2010. Proceedings 30. Springer,
2010, pp. 502–519.

[43] W. Du and M. J. Atallah, Protocols for Secure Remote Database Access
with Approximate Matching. Springer US, 2001, pp. 87–111.

[44] Y. Lu, B. Zhang, and K. Ren, “Low communication secure computa-
tion from semi-trusted hardware,” IEEE Transactions on Information
Forensics and Security, pp. 3962–3976, 2023.

[45] G. Dessouky, T. Frassetto, and A. Sadeghi, “Hybcache: Hybrid side-
channel-resilient caches for trusted execution environments,” in 29th
USENIX Security Symposium, USENIX Security 2020, August 12-14,
2020, S. Capkun and F. Roesner, Eds. USENIX Association, 2020, pp.
451–468.

[46] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. Lai, “Sgxpectre:
Stealing intel secrets from SGX enclaves via speculative execution,” in
IEEE European Symposium on Security and Privacy, EuroS&P 2019,
Stockholm, Sweden, June 17-19, 2019. IEEE, 2019, pp. 142–157.

[47] W. Huang, S. Xu, Y. Cheng, and D. Lie, “Aion attacks: Manipulating
software timers in trusted execution environment,” in Detection of
Intrusions and Malware, and Vulnerability Assessment - 18th Interna-
tional Conference, DIMVA 2021, Virtual EuroS&P Event, July 14-16,
2021, Proceedings, ser. Lecture Notes in Computer Science, L. Bilge,
L. Cavallaro, G. Pellegrino, and N. Neves, Eds. Springer, 2021, pp.
173–193.

[48] Y. Wang, R. Paccagnella, E. T. He, H. Shacham, C. W. Fletcher, and
D. Kohlbrenner, “Hertzbleed: Turning power Side-Channel attacks into
remote timing attacks on x86,” in 31st USENIX Security Symposium
(USENIX Security 22). USENIX Association, 2022, pp. 679–697.

[49] S. Johnson, V. Scarlata, C. Rozas, E. Brickell, and F. Mckeen, “Intel
software guard extensions: Epid provisioning and attestation services,”
White Paper, p. 119, 2016.

[50] B. Parno, J. R. Lorch, J. R. Douceur, J. W. Mickens, and J. M. McCune,
“Memoir: Practical state continuity for protected modules,” in 32nd
IEEE Symposium on Security and Privacy, S&P 2011, 22-25 May 2011,
Berkeley, California, USA. IEEE Computer Society, 2011, pp. 379–394.

[51] R. Strackx and F. Piessens, “Ariadne: A minimal approach to state
continuity,” in 25th USENIX Security Symposium (USENIX Security),
2016, pp. 875–892.

[52] B. Parno, J. R. Lorch, J. R. Douceur, J. Mickens, and J. M. McCune,
“Memoir: Practical state continuity for protected modules,” in 2011
IEEE Symposium on Security and Privacy, 2011, pp. 379–394.

[53] R. Strackx, B. Jacobs, and F. Piessens, “Ice: A passive, high-speed,
state-continuity scheme,” in Proceedings of the 30th Annual Computer
Security Applications Conference, ser. ACSAC ’14. Association for
Computing Machinery, 2014, p. 106–115.

[54] S. Matetic, M. Ahmed, K. Kostiainen, A. Dhar, D. Sommer, A. Gervais,
A. Juels, and S. Capkun, “ROTE: Rollback protection for trusted
execution,” in 26th USENIX Security Symposium (USENIX Security),
2017, pp. 1289–1306.

[55] J. Niu, W. Peng, X. Zhang, and Y. Zhang, “Narrator: Secure and practical
state continuity for trusted execution in the cloud,” in Proceedings of
the 2022 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’22. Association for Computing Machinery, 2022,
p. 2385–2399.

[56] W. Wang, S. Deng, J. Niu, M. K. Reiter, and Y. Zhang, “Engraft:
Enclave-guarded raft on byzantine faulty nodes,” in Proceedings of
the 2022 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’22, New York, NY, USA, 2022, p. 2841–2855.

[57] J. Lind, I. Eyal, F. Kelbert, O. Naor, P. R. Pietzuch, and E. G.
Sirer, “Teechain: Scalable blockchain payments using trusted execution
environments,” CoRR, vol. abs/1707.05454, 2017.

[58] A. Oprea and M. K. Reiter, “Integrity checking in cryptographic file
systems with constant trusted storage,” in Proceedings of the 16th
USENIX Security Symposium, Boston, MA, USA, August 6-10, 2007,
N. Provos, Ed. USENIX Association, 2007.

[59] G. Kaptchuk, M. Green, and I. Miers, “Giving state to the stateless:
Augmenting trustworthy computation with ledgers,” in 26th Annual
Network and Distributed System Security Symposium, NDSS 2019, San
Diego, California, USA, February 24-27, 2019. The Internet Society,
2019.

[60] R. Strackx and F. Piessens, “Ariadne: A minimal approach to state
continuity,” in 25th USENIX Security Symposium, USENIX Security 16,
Austin, TX, USA, August 10-12, 2016, T. Holz and S. Savage, Eds.
USENIX Association, 2016, pp. 875–892.

[61] M. K. Jangid, G. Chen, Y. Zhang, and Z. Lin, “Towards formal
verification of state continuity for enclave programs,” in 30th USENIX
Security Symposium (USENIX Security), 2021, pp. 573–590.

[62] B. Dinis, P. Druschel, and R. Rodrigues, “RR: A fault model for
efficient TEE replication,” in 30th Annual Network and Distributed
System Security Symposium, NDSS 2023, San Diego, California, USA,
February 27 - March 3, 2023. The Internet Society, 2023.

[63] S. Angel, A. Basu, W. Cui, T. Jaeger, S. Lau, S. Setty, and S. Singana-
malla, “Nimble: Rollback protection for confidential cloud services,” in
17th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 23). USENIX Association, 2023, pp. 193–208.

[64] M. Brossard, G. Bryant, B. E. Gaabouri, X. Fan, A. Ferreira, E. Grimley-
Evans, C. Haster, E. Johnson, D. Miller, F. Mo, D. P. Mulligan,
N. Spinale, E. V. Hensbergen, H. J. M. Vincent, and S. Xiong, “Private
delegated computations using strong isolation,” CoRR, 2022.

[65] “Confidential Computing: Hardware-Based Trusted Execution for Ap-
plications and Data,” Confidential Computing Consortium, Tech. Rep.,
2022.

[66] A. Erwig, S. Faust, S. Riahi, and T. Stöckert, “Commitee : An efficient
and secure commit-chain protocol using TEEs,” in 8th IEEE European
Symposium on Security and Privacy, EuroS&P 2023, Delft, Netherlands,
July 3-7, 2023. IEEE, 2023, pp. 429–448.

[67] R. Khalil, A. Zamyatin, G. Felley, P. Moreno-Sanchez, and A. Ger-
vais, “Commit-chains: Secure, scalable off-chain payments,” Cryptology
ePrint Archive, 2018.

[68] D. Natarajan, W. Dai, and R. G. Dreslinski, “CHEX-MIX: combining
homomorphic encryption with trusted execution environments for two-
party oblivious inference in the cloud,” IACR Cryptol. ePrint Arch., p.
1603, 2021.

[69] B. Fisch, D. Vinayagamurthy, D. Boneh, and S. Gorbunov, “IRON:
functional encryption using intel SGX,” in Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, CCS
2017, Dallas, TX, USA, October 30 - November 03, 2017, B. Thuraising-
ham, D. Evans, T. Malkin, and D. Xu, Eds. ACM, 2017, pp. 765–782.


	Introduction
	Background
	Multi-Party Computation
	Trusted Execution Environment
	Comparing MPC protocols and TEE

	Taxonomy and Criteria
	Use Case Analysis
	Trust TEE with Complete Confidentiality
	TEE with Access Pattern Leakage
	TEE without Confidentiality
	Hybrid Trust Model

	Challenges of Use Cases
	Security Assumptions of TEE Implementations
	Centralized Root of Trust
	Detection and Revocation of Compromised TEE

	Opportunities and Future Work
	New Security Primitives
	Standard Security Assumption
	Decentralized TEE Identity Management and Attestation
	Other Privacy-Enhancing Technologies
	End-Game Scenario

	Conclusion
	References

